Физика: Парадоксальная механика в вопросах и ответах
Шрифт:
Рис. 23. Схема сил, действующих на реальное колесо, катящееся по абсолютно твердой дороге.
А вот легковому автомобилю нельзя «позволить себе» ни того, ни другого. Если колеса будут слишком большими, автомобиль утратит мобильность, комфортабельность, эргономичность и эстетичность, а кроме того, станет слишком тяжелым. Ну, а твердые колеса будут резать асфальт, как сошедший с рельсов трамвай, да и тряска при движении станет непереносимой – мягкие
И еще одно обстоятельство, которое вызывает недоумение у каждого, кто пытается проанализировать качение упругого колеса по твердой дороге. Нижняя часть колеса расплющивается, и ее длина становится меньше соответствующей дуги недеформированного колеса. Зная, что окружная скорость точки на ободе шины равна произведению угловой скорости колеса на радиус колеса, мы видим, что этот радиус в точке контакта с дорогой меньше, чем рядом, где колесо не касается дороги. Получается, что окружная скорость разных точек колеса – различная? Если у одной и той же шины скорость в разных точках различная, то это означает или разрыв шины, или напротив – ее сжатие.
Именно сжатие и происходит в контакте колеса с дорогой – упругая поверхность шины сжимается, проскальзывает к центру зоны контакта, а при выходе из контакта происходит обратная картина. В передней зоне контакта колеса с дорогой силы трения скольжения при проскальзывании действуют со стороны дороги на колесо назад по движению, а в задней зоне их действие противоположно. Кроме того, что это скольжение создает потери (переход механической энергии в тепло), увеличивающие сопротивление качению, силы эти играют еще одну отрицательную роль. В передней зоне контакта, где давление выше из-за смещения вперед силы N, эти силы больше, чем в задней. И это, в свою очередь, опять же повышает сопротивление качению колеса.
Не следует забывать и о боковом скольжении частей шины по дороге – ведь колесо «расплющивается» в зоне контакта и в боковом направлении.
Вот какие сложные явления возникают при трении качения, и очень важно знать физическую природу этого очень распространенного в технике явления.
Из равенства моментов (см. рис. 23) N?a = Р?r, что необходимо для равномерного качения колеса по дороге, следует:
где а – коэффициент трения качения, имеющий размерность длины.
Надо сказать, что это очень неудобная величина и ею мало кто пользуется. Например, а = 0,05 мм – мало это или много? А ведь это коэффициент трения качения железнодорожного колеса по рельсу. Если диаметр колеса 1 м, а нагрузка на колесо – 10 кН, то, чтобы катить это колесо, нужна сила около 1 Н. Чтобы толкать уже стронутый с места вагон массой 60 т (весом 600 кН) без учета всех других потерь (аэродинамических, в подшипниках, уплотнениях и пр.) понадобится сила всего в 60 Н. Это кажется неправдоподобно малой силой, тем не менее, это так.
У «мягкой» автомобильной шины при движении по хорошему шоссе коэффициент трения качения в полсотню раз больше, и для толкания автомобиля массой в тонну при диаметре колеса 0,6 м понадобится уже
Так как на практике пользование коэффициентом а неудобно, чаще всего его «переводят» в вид, похожий на коэффициент трения скольжения:
Тогда для железнодорожного колеса:
а для автомобильного:
Эти значения соответствуют справочным данным; например, для автомобильного колеса на хорошей дороге fa = 0,007-0,015.
5. Механические загадки и парадоксы
5.1. Вопрос. Можно ли двигаться на парусном судне против ветра?
Ответ. Парусные суда уже давно «ходят» против ветра, правда, зигзагами, или, как называют их моряки, галсами.
Все дело в том, что у парусных судов киль делается очень глубоким, и движение судна боком практически исключается. Если же при этом парус поставить так, чтобы его плоскость делила пополам угол между направлением киля и направлением ветра, то появляется составляющая силы, направленная вдоль киля. Ветер оказывает давление на парус практически полностью перпендикулярно его плоскости, и сила этого давления раскладывается на направление, перпендикулярное килю (куда судно двигаться почти не в состоянии), и направление вдоль киля, куда судно и движется. Это движение, правда, происходит не «в лоб» ветру, а под острым углом к нему.
Через некоторое время судно поворачивает под тем же углом к ветру, но теперь угол отсчитывается в другую сторону. Вот и идет судно зигзагами, или галсами, против ветра. Парадокс, имеющий место на практике!
Схема движения судна и направления действия сил при этом показаны на рис. 24. Сила действия ветра на парус – Рв, сила, движущая судно вдоль киля – Рк, сила, перпендикулярная килю, почти не совершающая работы (так как судно не может двигаться боком) – Р0.
Рис. 24. Схема движения судна и направления действия сил при движении судна против ветра галсами.
5.2. Вопрос. Можно ли двигаться на безмоторном судне против течения реки?
Ответ. Оказывается, и это можно, хотя кажется противоречащим законам механики. Первым эту идею воплотил в жизнь знаменитый русский механик-самоучка Иван Петрович Кулибин (1735–1818). Когда Екатерина II увидела баржу, плывущую по Неве против течения, то была поражена. Ведь баржа была без парусов и без мотора (моторных судов, по крайней мере в России, тогда не было). Какая же сила толкала баржу против течения?