Логика случая. О природе и происхождении биологической эволюции
Шрифт:
Выяснение родственных связей между супергруппами представляет собой труднейшую проблему. Внутренние ветви чрезвычайно коротки, что означает быстрое (по меркам эволюции) расхождение супергрупп, возможно напоминавшее эволюционный Большой взрыв (см. гл. 6). В двух тщательных филогенетических исследованиях, в каждом из которых было проанализировано более 130 консервативных белков из нескольких десятков видов эукариот, после изучения эффекта исключения быстро эволюционирующих таксонов было получено филогенетическое древо эукариот, состоящее из трех мегагрупп (Burki et al., 2008; Hampl et al., 2009). Эти мегагруппы представлены Unikonta, Excavata и объединенной группой, составленной из Plantae, Chromalveolata и Rhizaria (см. рис. 7–2б).
Предпринималось несколько попыток вывести корень филогенетического древа эукариот (см.
Игорь Рогозин и коллеги использовали другой РГИ-подход, основанный на редких замещениях высококонсервативных аминокислотных остатков, которые требуют двух нуклеотидных замен, и пришли к заключению, что наиболее вероятное положение корня древа – между растениями и остальными эукариотами (см. рис. 7–2б; Rogozin et al., 2009). И снова представляется, что такая схема имеет биологический смысл, поскольку цианобактериальный эндосимбиоз, давший начало пластидам, произошел в линии растений и, согласно данному сценарию, мог оказаться тем событием, которое инициировало первичное расхождение эукариот. Несколько крупных ветвей Chromalveolata возникли в результате поглощения одноклеточных водорослей предковыми, беспластидным одноклеточным эукариотами (см. рис. 7–2б) [61] .
61
Подчеркивая, таким образом, роль эндосимбиоза как эволюционного события, приводящего к возникновению принципиально новых групп организмов.
Другая возможная позиция корня эукариот следует непосредственно из результатов анализа митохондриальных геномов. Как отмечалось ранее в этой главе, представитель Excavata Reclinomonas americana имеет, несомненно, самый сложный из известных митохондриальных геномов, содержащий около ста функциональных генов, тогда как у остальных эукариот их менее двадцати. Можно было бы предположить, что Reclinomonas представляет собой самую раннюю ветвь эукариот, отделившуюся от ствола древа эукариот до окончательной деградации генома эндосимбионтов. Данный сценарий поместил бы корень древа в супергруппу Excavata. Однако имеется жизнеспособная и, возможно, более вероятная альтернатива: последний этап деградации митохондриального генома наступил уже после расхождения главных ветвей эукариот и продолжался конвергентными путями в разных линиях независимо. Последний сценарий подразумевает мощный эволюционный процесс, приводящий к потере (либо к переносу в геном хозяина) всех генов эндосимбионта, за исключением малого числа тех, которые обязательно должны остаться в митохондриальном геноме для сохранения жизнеспособности митохондрий; ниже в данной главе мы обсудим возможную природу этого процесса и требования к митохондриальному геному.
Отсутствие согласия относительно положения корня древа и монофилии по крайней мере в некоторых супергрупах, не говоря о мегагруппах, указывает на то, что, несмотря на некоторые появляющиеся свидетельства, порядок первичных ветвлений в филогении
Сложный, «растущий» LECA и темные века эволюции эукариот
Реконструкция LECA
Закрепление главных черт клеточной организации и, что более важно, существование большого набора генов, остающихся консервативными у всех или у большинства ранообразных эукариот, не оставляет сомнений, что все ныне существующие эукариоты произошли от одного общего предка (Last Eukaryote Common Ancestor, LECA). Как обсуждалось в начале этой главы, все эукариоты, которые были изучены достаточно детально, имеют либо митохондрии, либо МПО. Самое простое (самое экономное) заключение из этого положения вещей состоит в том, что LECA уже обладал митохондриями. И повторюсь, правдоподобность этого вывода возрастает с каждой новой описанной группой эукариот, в которой обнаруживаются органеллы, подобные митохондриям.
Реконструкция эволюции генного репертуара эукариот основана на тех же принципах и методах, что и реконструкция эволюции прокариот, обрисованная в главе 5, – в общем и целом, это принципы наибольшей экономии и наибольшего правдоподобия. Описывая суть этих подходов очень упрощенно, можно сказать, что происхождение генов, представленных у различных ныне живущих представителей главных линий эукариот, и даже предположительно потерянных в некоторых линиях, можно отследить вплоть до LECA. Результаты всех этих реконструкций согласованно указывают на сложность LECA как в отношении числа предковых генов, так и, что может быть даже более важно, в отношении наличия у предка типичных функциональных систем эукариотической клетки. Максимально экономные реконструкции, основанные на филетических паттернах в кластерах ортологичных генов эукариот, относят к LECA приблизительно 4100 генов (Koonin et al., 2004). Такие оценки очень консервативны, поскольку они не принимают во внимание главного аспекта эволюции эукариот – специфической для индивидуальных ветвей утраты предковых генов. Действительно, даже животные и растения, по-видимому наименее склонные к утрате генов эукариотические царства, явно утратили около 20 процентов предполагаемых предковых генов, идентифицированных у свободноживущего представителя Excavata Naegleria gruberi (Fritz-Laylin et al., 2010; Koonin, 2010b). Таким образом, эти реконструкции означают, что геном LECA был не менее сложным, чем геном типичных современных свободноживущих одноклеточных эукариот (Koonin, 2010a).
Этот вывод подтверждается сравнительно-геномными реконструкциями предковой композиции ключевых функциональных систем LECA, таких как поры ядра (Mans et al., 2004), сплайсосомы (Collins and Penny, 2005), аппарата РНК-интерференции (Shabalina and Koonin, 2008), системы передачи сигналов посредством убиквитина и протеасом (Hochstrasser, 2009), аппарата внутренних мембран (Field and Dacks, 2009) и аппарата деления клетки (Makarova et al., 2010). Итоги этих исследований ясны и согласуются между собой, даже когда в качестве шаблона для реконструкции используются различные топологии филогенетического древа эукариот: LECA уже обладал всеми этими структурами со всей их функциональностью, возможно столь же сложной, как и у современных эукариот.
Реконструкция других аспектов геномной композиции и архитектуры LECA также указывает на высокую сложность предкового генома. Сравнительный геномный анализ положения интронов в ортологических генах внутри супергрупп и между ними свидетельствует о высокой плотности интронов у предков супергрупп и у LECA, не меньшей, чем у современных свободноживущих одноклеточных эукариот, a вероятнее всего, близкой к богатым интронами генам животных и растений (ниже в данной главе мы вернемся к примечательной истории эукариотических интронов более подробно).
Систематический анализ широко распространенных паралогичных генов эукариот указывает на то, что LECA предшествовали сотни дупликаций, особенно генов, вовлеченных в кругооборот белков, таких как молекулярные шапероны (Makarova et al., 2005). В итоге эти результаты ясно показывают, что LECA был типичной, полностью развитой эукариотической клеткой. В последующей эволюции эукариот не проявляется постоянной тенденции к повышению сложности клеток, за исключением специфических для ряда линий «украшательств», обнаруженных в группах многоклеточных (животных, растений и бурых водорослей), а также у некоторых протист, таких как зеленые водоросли или жгутиконосцы.