Шрифт:
Часть первая. РЕАЛИЗМ
Надеюсь, это сочинение покажет, сколь велико мое преклонение перед Кантом, возможно, оно доходит до “идолопоклонства”. С моей точки зрения, почти все проблемы философии только в работах Канта получили ту форму, которая сделала их действительно интересными. Однако теперь я хочу совершить нечто такое, что подлинный поклонник Канта мог бы счесть богохульством: я хочу начать эту статью с размышления по поводу одного замечания Ницше. Надеюсь, что это замечание нисколько не задевает память Канта.
В “Рождении трагедии” Ницше пишет, что “чем большую область охватывает наука, тем больше парадоксов она встречает”. Часть первая этой статьи будет размышлением над этим удивительным афоризмом. Меня интересует в данном случае не сам Ницше (хотя он, конечно, чрезвычайно интересен) и не его текст, а только его замечание, которое, как мне представляется, относится к мышлению и опыту скорее нашего времени, чем времени Ницше. Замечание говорит об “области науки”, поэтому я хочу посмотреть на науку и на то, каким образом мир может стать более парадоксальным по мере того, как увеличивается сфера научного познания. Замечание Ницше можно было бы проиллюстрировать на материале
Мой первый пример взят из области, которая мало знакома даже наиболее образованным людям, – из области квантовой механики. Я не хочу обсуждать здесь технические подробности, поэтому не буду пытаться полностью описать эту теорию. Я попробую изложить дискуссию, которая началась почти одновременно с появлением самой квантовой механики, – дискуссию о том, “как интерпретировать” квантовую механику.
Дискуссии подобного рода встречались в истории науки, однако причины данного спора были в высшей степени необычными. Я попробую схематично обрисовать эти причины. Теория, в том виде, в каком ее сформулировал Бор, а также (несколько иначе) фон Нейман, применяется к динамическим системам, например системам элементарных частиц или системам полей и частиц. Как и в классической физике, системы могут быть достаточно малы – одна, две или три частицы – или, “в принципе”, могут быть достаточно большими. Однако – и в этом заключается любопытная особенность, ненаблюдающаяся в классической физике, – любое применение теории требует, чтобы в дополнение к данной “системе” присутствовал “аппарат”, или “наблюдатель”, невключенный в данную систему. Таким образом, в принципе, не существует “квантовой механической теории всего мира”. [2]
2
Однако это отрицается так называемой Интерпретацией Множественности Миров в квантовой механике, которую мы будем обсуждать несколько ниже в данной статье.
Мудрые основатели квантовой механики – люди типа Юджина Вигнера – говорили о “разрыве между системой и наблюдателем”. Аппарат, возможно, осуществляющий измерения, проверяющие предсказания теории, находится в этом разрыве на стороне “обозревателя”. Согласно собственной теории Бора относительно так называемой Копенгагенской интерпретации (которая в действительности является совокупностью интерпретаций благодаря Бору, фон Нейману, Гейзенбергу, Вигнеру и другим; все они разнятся в большей или меньшей степени), каждое свойство системы рассматривается как имеющее значение и существование только в связи с конкретным аппаратом измерения в конкретной экспериментальной ситуации. Кроме того, предполагается, что аппарат измерения поддается удовлетворительному описанию (постольку, поскольку он функционирует в эксперименте) с использованием языка и математических формул только классической физики (включая специальную теорию относительности). Таким образом, с точки зрения Бора, квантовая механика не делает классическую физику просто устаревшей; скорее, она предполагает классическую физику в той мере, в какой, например, было бы абсурдно утверждать, что ньютоновская физика предполагает средневековую физику Использование квантовой механики для описания “систем” предполагает использование теории, которую большинство людей считало бы несовместимой с квантовой механикой, – классической физики – для описания ее аппарата! Это достаточно парадоксальный факт, но зависимость квантовой физики от классической физики (в боровской версии Копенгагенской интерпретации) не является парадоксальной в том смысле, к которому я хочу привлечь внимание.
Я хочу напомнить замечание, сделанное выше, о том, что, в принципе, не существует “квантовой механики всего мира”. Отчасти это обращение к ньютоновскому видению – я говорю о ньютоновском видении потому, что ньютоновская физика обладает особой способностью визуализации, в большой степени повлиявшей на теологию, философию, психологию, всю культуру, – которое представляет нам (то, что было в XVII веке) “Божественное Видение” Вселенной. Универсум – это гигантская машина, и если Вы материалист, то мы сами являемся лишь подсистемами этой гигантской машины. Если же Вы картезианский дуалист, то наши тела являются лишь подсистемами этой гигантской машины. Наши измерения, наши наблюдения в той мере, в какой они могут быть описаны физически, представляют собой просто взаимодействия внутри целого устройства. Мечта о картине универсума, которая будет настолько полной, что действительно будет включать теоретика-наблюдателя, создающего картину универсума, является мечтой как физики, так и метафизики (или физики, которая раз и навсегда делает метафизику ненужной). Даже дуалисты типа Декарта мечтают об этом; они просто чувствуют, что мы должны иметь дополнительное фундаментальное знание, фундаментальную науку Психологию, чтобы описать “душу, сознание или интеллект” и сделать нашу мечту реальной. Эта мечта постоянно присутствует в западной культуре с XVII века. Можно представить ее как мечту науки, не оставляющей ничего за своими пределами и поэтому затрагивающей любые парадоксы. Каждый, кто хоть однажды работал, экспериментально или математически, с действительной научной теорией, должен был воспринять эту мечту.
Однако Копенгагенская интерпретация Бора представляет собой именно эту мечту! Как и Кант, Бор чувствует, что мир “сам по себе” находится за пределами возможностей человеческого ума в его отображении; новый поворот, который Кант никогда не принял бы, заключается в том, что, согласно Бору, даже “эмпирический мир”, мир нашего опыта не может быть полностью описан с помощью только одной картины. Вместо этого мы должны использовать “дополнительно”
Идеи Бора являются в высшей степени противоречивыми и остаются таковыми по сей день. Одна из упомянутых мною идей о том, что квантовая механика по сути своей предполагает использование классической физики (для описания аппарата измерения), как мне представляется, утратила свое значение. Классическая работа фон Неймана показала, как можно проанализировать измерения в понятиях чисто квантовой механики. [3] Однако “разрыв между наблюдателем и системой” оказался более глубоким, и именно этот разрыв, а также идея отнесенности физических понятий к экспериментальной ситуации лежат в основе интерпретации Бора. Немногие физики сегодня восприняли бы “дополнительность” в боровском смысле, т. е. как относящуюся в первую очередь к дополнительному использованию классических понятий. В дальнейшем мы не будем больше говорить об этом аспекте мысли Бора.
3
Neumann J. von. Mathematical Foundations of Quantum Mechanics Princeton, N. J.: Princeton University Press, 1955. Я обсуждаю точку зрения Неймана в своей книге “Quantum Mechanics and the Observer”, гл 14 книги “Realism and Reason”. Cambridge: Cambridge University Press, 1975, которая представляет собой 3-й том моей книги “Philosophical Papers”.
Для того чтобы увидеть, как далеко хотят пойти оппоненты Копенгагенской интерпретации, я напомню о проблеме, появившейся сразу же в связи с воззрениями сторонников Копенгагена, а также об антикопенгагенском ответе на эту же проблему, который, однако, появился много лет спустя.
Предположим, что у меня есть система, описанная настолько полно, насколько это под силу квантовой механике. В квантовой механике описания называются “состояниями” [4] ; наиболее полное, с формальной точки зрения, описание называется “максимальным состоянием” (а также “волновой функцией” или “пси-функцией”). Для ясности представим систему атома радия в стадии радиоактивного распада. Несколько упрощая проблему, скажем, что в будущее время t атом может находиться или в исходном состоянии А, или в состоянии “распада” В. (Другими словами, атом может испустить или не испустить один или больше квантов радиации). “Недетерминистический” характер теории совершенно не отражается в математическом формализме! Математически формализм – знаменитое уравнение Шредингера – говорит о том, что атом совершает переход от исходного состояния А в новое состояние А'. То, что атом может распасться (состояние В) или остаться прежним (состояние А) отражается не с помощью статистического элемента в самом уравнении Шредингера, как можно было бы ожидать в случае нормальной стохастической теории, а скорее с помощью факта, что новое состояние А' является, в некотором смысле, “суперпозицией” двух противоположных возможностей А и В.
4
В дальнейшем в целях упрощения я вынужден отождествлять состояния и их описания.
Этим свойством теории с самого начала воспользовались оппоненты Копенгагенской интерпретации: среди оппонентов были как Эйнштейн, так и сам Шредингер. “Посмотрите, – говорили они, - так называемая "суперпозиция" A и В в действительности совершенно не является полным описанием. Когда Вы говорите, "система будет находиться в состоянии А" это означает, что система будет находиться или в состоянии А, или в состоянии В. Квантовая механика является просто неполным описанием физической реальности. Ее так называемые "максимальные состояния" типа А' являются только частичными описаниями”.
Защитники Копенгагенской интерпретации [5] возражали, что предсказание, что атом переходит в состояние А' относится к тому, что произойдет с атомом, когда он будет изолирован – a fortiori [6] , когда не делается никаких измерений. Если измерение делается во время t, то оно “перебрасывает” систему или в состояние А, или в состояние В. Детерминистский переход
5
Защита данного возражения содержится в работах фон Неймана. Сам Бор сказал бы, что переход А -› А' является чисто формальным, не имеющим смысла вне конкретной экспериментальной ситуации. Если экспериментальная ситуация такова, что измерение сделано во время t с целью выявить распался атом или нет, то соответствующей классической картиной будет та, что атом уже находится в состоянии А или в состоянии В (т. е. он уже испустил радиацию или еще нет), и измерение определяет в каком именно; но это лишь "классическая картина", хотя и соответствующая конкретной экспериментальной ситуации. Вопрос “В каком же состоянии находится атом во время t, если измерений не проводится?” с научной точки зрения не имеет смысла, согласно Бору.
6
Тем более (лат.) – Прим. перев.