Чтение онлайн

на главную - закладки

Жанры

Тест на ДНК. С чего все начиналось? О наследственности, изменчивости и эволюции
Шрифт:

Для дальнейшего испытания были взяты признаки окраски цветка и длины оси, при этом выбор был сделан так, что в третьем опытном году каждый признак должен был проявиться у половины всех растений, если вышеупомянутое предположение правильно. А, В, а, b служат опять для обозначения различных признаков.

Форма Аb была оплодотворена аb, причем получился гибрид Ааb. Затем аВ было оплодотворено также ab, отсюда гибрид

аВb. Во втором году для дальнейшего оплодотворения гибрид Ааb был взят как семенное растение, другой гибрид аВb – как пыльцевое растение.

Семенное растение Ааb пыльцевое растение аВb.

Возможные зачатковые клетки Аb, аb пыльцевые клетки аВ, ab.

Из оплодотворения между возможными зачатковыми и пыльцевыми клетками должны получиться четыре соединения, именно:

АаВb + аВb + Ааb + аb.

Отсюда видно, что по вышеизложенному предположению в третьем опытном году из всех растений половина должна была иметь

лилово-красные цветы (Аа)…. Члены 1-3

белые цветы (а)» 2-4

длинную ось (Вb)» 1-2

короткую ось (b)» 3-4

Из 45 оплодотворений второго года получилось 187 семян, из которых в третьем году достигли цветения 166 растений. Отдельные члены появились из них в следующем числе:

Следовательно:

лилово-красная окраска цветов (Аа) появилась у 85 растений

белая»» (а)»» 81»

длинная ось»» (Вb)»» 87»

короткая»»» (b)»» 79»

Итак, выставленное воззрение достаточно подтверждается и в этом опыте.

Для признаков формы бобов, окраски бобов и расположения цветов были также поставлены небольшие опыты, которые дали совершенно согласные результаты. Все соединения, которые были возможны при объединении различных признаков, появились в точности и приблизительно в равном числе.

Следовательно, экспериментальным путем подтвердилось предположение, что гибриды гороха образуют зачатковые и пыльцевые клетки, которые по своим свойствам и в равных количествах соответствуют всем константным формам, получающимся из комбинаций, соединенных при оплодотворении признаков.

Различие форм среди потомков гибридов, а также и численные отношения, в которых эти последние наблюдаются, находят себе достаточное объяснение в только что изложенном положении. Простейшим случаем является ряд двух различающихся признаков. Этот ряд обозначается, как уже известно, выражением А + 2Аа + а, где А и а означают формы с константно различающимися признаками и Аа – гибридную форму обоих. Он содержит в трех различных членах четыре индивида. При образовании этих последних пыльцевые и зачатковые клетки формы А и а вступают в оплодотворение в равных долях в среднем, поэтому каждая форма образуется дважды из четырех индивидов.

Следовательно, в оплодотворении участвуют:

пыльцевые клетки А + А + а + а,

зачатковые клетки А + А + а + а.

Какой из двух видов пыльцы соединится с каждой отдельной зачатковой клеткой, вполне предоставлено случаю. По теории вероятности в среднем каждая форма пыльцы А и а соединяется одинаковое число раз с каждой формой зачатковой клетки А и а; поэтому одна из двух пыльцевых клеток

А встречается при оплодотворении с зачатковой клеткой А, другая – с зачатковой клеткой а; таким же образом одна пыльцевая клетка а соединяется с зачатковой клеткой А, другая – с а.

Результаты этих оплодотворений можно сделать показательными, обозначая связанные зачатковые и пыльцевые клетки в форме дроби, причем пыльцевые клетки помещаются над чертой, а зачатковые клетки – под ней. В данном случае получается:

А/А + A/а + a/A + a/а

У первого и четвертого члена зачатковые и пыльцевые клетки одинаковы, поэтому продукты их соединения константны, а именно А и а; у второго и третьего, наоборот, происходит вновь соединение обоих различающихся исходных признаков, поэтому выходящие из этого оплодотворения формы совершенно тождественны с гибридом, от которого они произошли. Следовательно, происходит повторная гибридизация. Этим объясняется то замечательное явление, что гибриды могут производить наряду с обеими основными формами также потомков подобных себе; A/a и a/A дают оба одинаковое соединение Аа, потому что для успеха оплодотворения, как было показано раньше, нет никакой разницы, какой из двух признаков принадлежит пыльцевой или зачатковой клетке. Поэтому

A/A + A/a + a/A + a/a = A + 2Aa + a

Такой характер принимает в среднем ход распределения форм при самооплодотворении гибридов, если в них соединяются два различающихся признака. Но в отдельных цветках и у отдельных растений могут происходить значительные отклонения в относительном количестве производимых ими отдельных форм ряда. Несмотря на то, что количества, в которых встречаются оба рода зачатковых клеток в завязи, являются равными только в среднем, вполне предоставляется случаю, каким из двух видов пыльцы произведено опыление каждой отдельной зачатковой клетки. Поэтому отдельные цифры неизбежно подвергаются колебаниям, и возможны даже крайние случаи, которые приводились раньше в опытах над формой семян и окраской белка. Истинные числовые отношения могут быть даны только средними величинами, полученными из суммы возможно большего числа отдельных случаев; чем больше их число, тем вернее устраняются случайности.

Ряды развития гибридов, в которых соединены двояко различающиеся признаки, содержат 9 различных форм среди [каждых] 16 индивидов, именно: АВ + Аb + аВ + ab + 2АВb + 2аВb + 2АаВ + 2Ааb + 4АаВb. Между различными признаками исходных растений А, а и В, b возможны 4 комбинации; поэтому и гибрид дает четыре соответствующие формы зачатковых и пыльцевых клеток АВ, Аb, аВ, ab, и каждая из них вступает в среднем 4 раза в оплодотворение, если в ряду содержится 16 индивидов. Поэтому в оплодотворении принимают участие:

пыльцевые клетки: АВ + АВ + АВ + АВ + Аb + Ab + Аb + Ab + aB + аВ + аВ + аВ + ab + ab + ab + ab

зачатковые клетки: АВ + АВ + АВ + АВ + Аb + Ab + Аb + Ab + aB + аВ + аВ + аВ + ab + ab + ab + ab

В среднем при оплодотворении каждая форма пыльцы соединяется одинаково часто с каждой формой зачатковой клетки, поэтому каждая из 4 пыльцевых клеток АВ соединяется по одному разу с каждым из видов зачатковых клеток АВ, Аb, аВ, ab. Совершенно так же происходит соединение остальных пыльцевых клеток форм Ab, АВ, ab со всеми другими зачатковыми клетками. Отсюда получается:

Поделиться:
Популярные книги

Крепость в Лихолесье

Ангина
Фантастика:
фэнтези
5.00
рейтинг книги
Крепость в Лихолесье

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Клан Мамонта. Народ моржа. Люди Быка

Щепетов Сергей
Каменный век
Фантастика:
научная фантастика
6.60
рейтинг книги
Клан Мамонта. Народ моржа. Люди Быка

Газлайтер. Том 3

Володин Григорий
3. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 3

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Глинглокский лев. (Трилогия)

Степной Аркадий
90. В одном томе
Фантастика:
фэнтези
9.18
рейтинг книги
Глинглокский лев. (Трилогия)

Злыднев Мир. Дилогия

Чекрыгин Егор
Злыднев мир
Фантастика:
фэнтези
7.67
рейтинг книги
Злыднев Мир. Дилогия

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Полковник Империи

Ланцов Михаил Алексеевич
3. Безумный Макс
Фантастика:
альтернативная история
6.58
рейтинг книги
Полковник Империи