10 гениев науки
Шрифт:
1905 год. Четыре статьи
Некоторые исследователи по значению в истории физики сравнивают 1905 год с 1665–1666 годами, когда эпидемия чумы заставила Ньютона покинуть Кембридж и поселиться в провинции. В этом году гений Эйнштейна вырвался из тихого кабинета Швейцарского Бюро патентов и начал свое торжественное шествие по страницам научных изданий. Весной 1905 года Эйнштейн в задорном и шуточном стиле писал Конраду Габихту: «Почему Вы до сих пор не прислали мне свою диссертацию? Разве Вам не известно, жалкая Вы личность, что я оказался бы одним из тех полутора чудаков, которые прочтут ее с интересом и удовольствием? Обещаю Вам взамен четыре работы <.> первая из них <.> является весьма революционной.»
Итак, в 1905 году Эйнштейн опубликовал несколько статей. Три из них без преувеличения можно назвать историческими. Между тем начало работы не предвещало триумфа. Работник патентного
«Славной моей целью было найти такие факты, которые возможно надежнее устанавливали бы существование атомов определенной конечной величины. Согласие этих выводов (о статистическом законе броуновского движения, с опытом, а также определенная Планком из закона излучения истинная величина молекул <.> убедили многочисленных тогда скептиков (Оствальд, Мах) в реальности атомов».
Здесь хочется отметить, что упомянутый Оствальд — тот самый лейпцигский профессор, который в свое время оставил без внимания письма Эйнштейна и его отца. К чести обоих ученых нужно сказать, что впоследствии они поддерживали дружеские отношения.
Статья «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории» была третьей из опубликованных Эйнштейном в 1905 году. Но порядок написания статей не отвечал хронологии исследований их автора. Поэтому мы и выбрали такую странную последовательность изложения. Сначала ученый написал статью «Новое определение размеров молекул», которая тесно связана с описанной выше, но сильно уступает ей по значению. Эту работу он подал в Цюрихский университет в качестве докторской диссертации. Диссертация была принята не с первого раза из-за ее незначительных объемов. Но все же в 1905 году Эйнштейн стал доктором философии.
Следующий вопрос, которым занялся ученый — изучение природы света. Этой проблемы мы уже касались, когда речь шла о Ньютоне. Напомним, что существовало два основных взгляда на природу света: корпускулярная и волновая гипотезы. К середине XIX века, усилиями многих ученых, особенно Огюстена Френеля, позиции волновой гипотезы усилились, а вскоре стали настолько крепкими, что в ней уже практически не сомневались. Казалось, оставалось только найти объяснения некоторым аномалиям, которые в нее не укладывались. Знаменитый Генрих Герц говорил: «С нашей, человеческой, точки зрения, волновая теория света — несомненный факт». Но на рубеже веков, в 1900 году, Макс Планк, исследуя световое излучение горячих тел, пришел к важному выводу. Спектр такого излучения может быть объяснен, если предположить, что при тепловом излучении энергия испускается не непрерывно, а дискретно, в виде мельчайших порций. Для определения их величины Планк ввел понятие кванта действия, позже названного постоянной Планка. Такие выводы расходились с положениями классической физики. Но сам Планк был ученым довольно консервативных взглядов. Сделав революционное открытие, он стал искать объяснение в рамках традиционных для его времени научных воззрений. Понимая важность полученных им результатов, Планк продолжал сомневаться в их достоверности. О кванте действия он писал: «… либо фиктивная величина, и тогда весь вывод закона излучения был в принципе ложным и представлял собой всего лишь пустую игру в формулы, лишенную смысла, либо же вывод закона излучения опирается на некую физическую реальность, и тогда квант действия должен приобрести фундаментальное значение в физике и означает собой нечто совершенно новое и неслыханное, что должно произвести переворот в нашем физическом мышлении, основывавшемся со времен Лейбница и Ньютона, открывших дифференциальное исчисление на гипотезе непрерывности всех причинных соотношений».
Эйнштейн же в этом отношении был прямой противоположностью Планка. Авторитетов для него не существовало. 17 марта 1905 года ученый послал в редакцию «Annalen der Physik» статью «Об одной эвристической точке зрения
Ну и, наконец, перейдем к рассказу о четвертой статье 1905 года. 30 июня 1905 года статья «К электродинамике движущихся тел», 30 страниц печатного текста, уже была в редакции «Annalen der Physik». Таким образом, со времени окончания работы «Об одной эвристической точке зрения на возникновение и превращение света» прошло всего три с половиной месяца. Работа «К электродинамике движущихся тел» излагала специальную теорию относительности. Поскольку именно теория относительности принесла Эйнштейну наибольшую известность, остановимся на ней подробнее.
Теория относительности
Приступая к разговору о теории относительности, нам придется сделать небольшой обзор предпосылок ее появления. Со времен Ньютона в науке господствовали представления об абсолютном пространстве и абсолютном времени. Вот как определял их Ньютон:
«Абсолютное пространство остается в силу своей природы и безотносительно к какому-либо внешнему предмету всегда одинаковым и неподвижным».
«Абсолютное, истинное и математическое время течет само по себе и в силу своей природы равномерно и безотносительно к какому-либо внешнему предмету».
Можно смело сказать, что такая точка зрения вполне отвечает нашим бытовым представлениям о времени и пространстве. Теперь обратимся к другому вопросу, казалось бы, мало связанному с предыдущими утверждениями знаменитого англичанина. Речь вновь пойдет о свете и его природе. Согласно волновой гипотезе, свет представляет собой волны, распространяющиеся в особой среде — световом (светоносном) эфире. Считалось, что эфир проникает во все тела и вещества, но не перемещается вместе с ними.
В 1860-х годах английский физик Джеймс Клерк Максвелл вывел уравнения, описывающие электромагнитные явления в средах и вакууме. Одним из важнейших следствий этих уравнений стала конечность скорости распространения электромагнитных взаимодействий. Эта конечная скорость оказалась равна приблизительно 300000 км/с, то есть скорости света в вакууме.
Теперь осталось связать эти два представления между собой. Поскольку гипотетический эфир не участвует в движении тел, значит, он находится в состоянии абсолютного покоя, а следовательно, и является олицетворением абсолютного пространства, относительно которого движутся все тела. Значит, и Земля движется относительно эфира. И движется, согласно законам планетарной механики, с большой скоростью. Следовательно, скорость световых волн, движущихся параллельно движению Земли, должна отличаться от скорости световых волн, движущихся перпендикулярно ему. Такой гипотетический эффект назвали «эфирным ветром». Еще в начале XIX века совершались попытки экспериментально обнаружить эфирный ветер. Сделать этого не удалось, как тогда казалось, из-за недостаточного качества приборов. Но в 1888 году американский физик Альберт Майкельсон провел более точный эксперимент и. тоже не обнаружил эффекта эфирного ветра, а точнее, доказал его отсутствие. Ирландец Джон Фитцджеральд, а вслед за ним голландец Хенрик Антон Лоренц попытались спасти гипотезу эфира, предположив, что быстро движущиеся тела уменьшаются в направлении движения. К 1904 году Лоренц, для того чтобы уничтожить противоречия между уравнениями Максвелла и результатами опыта Майкельсона, разработал математический аппарат, позволяющий решить проблему, отталкиваясь от данного предположения. В основе этого решения лежали преобразования системы координат и времени какого-либо события при переходе от одной системы отсчета в другую. Позже эти преобразования были названы по имени их автора. Однако Лоренц не решился опровергнуть закон о сложении перемещений и скоростей, лежащий в основе ньютоновской физики. Поэтому он попытался ввести в свои расчеты силы, вызывающие сокращение быстро движущихся тел.