100 миллиардов солнц: Рождение, жизнь и смерть звезд
Шрифт:
Как часто все решает случай! Уильям Тиффт — наблюдатель, чье дежурство начиналось с 15 января, уступил незадачливым новичкам ночи 15 и 16 января, чтобы они смогли вновь попытать счастья. Здесь я прервусь и предоставлю слово самому Диснею.
«Пятнадцатого днем было облачно, но к вечеру небо прояснилось. Мы начали ровно в 20 часов. Тейлор был еще в Тусоне; Кок и я сменяли друг друга у телескопа, а Мак-Каллистер работал с аппаратурой Тейлора. Для начала мы сделали замер от темного неба, в стороне от звезд. Для следующего измерения мы выбрали звезду, которую Вальтер Бааде обозначил как центральную звезду Крабовидной туманности. Всего тридцать секунд потребовалось для того, чтобы прибор показал нарастающее накопление импульса на счетчиках. Заметен был и слабый вторичный импульс, отстоящий от главного примерно на половину периода; он был значительно шире и не такой высокий.
В 20.30, через полчаса после начала наблюдений, позвонил Тейлору. Он отнесся к моему сообщению скептически и предложил изменить кое-что в аппаратуре, чтобы устранить возможные ошибки. Лишь на следующую ночь, наблюдая своими глазами за накоплением импульса, он перестал сомневаться.
В 22.10 мы позвонили своим женам, и нам с трудом удалось уговорить их не приезжать тотчас же к нам на гору. В 1.22 появились облака. Наблюдения были окончены. У трех наблюдателей в обсерватории не было ни малейшего сомнения в том, что им посчастливилось открыть первый оптический пульсар». На этом кончается рассказ Диснея.
Теперь и другие астрономы стали искать подтверждения открытия. На рис. 8.8 приведены два снимка, полученные по принципу, иллюстрируемому на рис. 8.6 . Пульсар, отсутствующий на правом снимке, оказывается нижней из двух центральных звезд на рис. 8.5 (он отмечен стрелками на правом и нижнем полях снимка). С помощью рис. 8.5 можно отыскать пульсар на рис. 7.6 , где Крабовидная туманность изображена полностью.
Рис. 8.8. Два снимка, полученные по методу двух телевизионных изображений (см. рис. 8.6 ), позволяют выявить звезду со снимка на рис. 8.5 , которая посылает свет импульсами в ритме пульсара Крабовидной туманности. На рис. 8.5 эта звезда помечена белыми метками на правом и нижнем полях. Сравнивая рис. 8.5 и 7.6 , легко найти на снимке пульсар Крабовидной туманности, который здесь ничем не отличается от других звезд. (Фото Ликской обсерватории.)
Что такое пульсар?
После открытия пульсара в Крабовидной туманности стало ясно, что пульсары каким-то образом связаны со взрывами сверхновых. По-видимому, сигналы пульсара идут от того объекта, который остается на месте взрыва сверхновой. Это предположение подтверждается и другим пульсаром, излучение которого исходит из области, где наличие газовых масс указывает на происшедший ранее взрыв сверхновой. Этот взрыв, по всей вероятности, произошел очень давно, задолго до аналогичного события в Крабовидной туманности. В созвездии Паруса разлетающиеся газовые массы выглядят уже не как компактное пятно, а как отдельные «нити», имеющие большую протяженность. Период этого пульсара на 0,09 секунды больше периода пульсара в Крабовидной туманности. Это третий [23] из самых быстрых известных пульсаров. С самого начала велся поиск этого объекта в видимой области спектра. Но успеха удалось добиться лишь в 1977 г.: письмо, полученное 9 февраля редакцией журнала «Nature», в котором говорилось об отождествлении пульсара в созвездии Паруса с видимой звездой, было подписано двенадцатью авторами. Отметим, что наряду с этими двенадцатью учеными, работающими в Англии и Австралии, в предшествующие восемь лет многие астрономы на лучших телескопах мира занимались поисками видимой звезды, «мигающей» в том же ритме, что и пульсар в созвездии Паруса. Так что становится ясно, сколь масштабному всемирному бдению был объявлен отбой этой заметкой. Между прочим, Майкл Дисней, участвовавший в открытии оптического пульсара в Крабовидной туманности, входил и в эту группу ученых.
23
После открытия миллисекундных радиопульсаров его место 5–6. — Прим. ред.
У
Но что же такое пульсары? Что остается, когда жизнь звезды заканчивается гигантским взрывом? Мы уже знаем, что пространственная область, из которой исходит излучение пульсара, должна быть очень малой. Какие же процессы могут происходить в столь малой области так быстро и с такой регулярностью, чтобы можно было привлечь их к объяснению феномена пульсара? Быть может, это звезды, которые, подобно цефеидам, периодически «раздуваются» и вновь сжимаются? Но в таком случае плотность звездного вещества должна быть очень высокой, так как лишь тогда период осцилляции может быть достаточно малым (вспомним, что период изменения блеска цефеид составляет несколько суток). Нас же интересуют объекты, которые способны осциллировать с периодом в сотые доли секунды. Даже самые плотные из известных нам звезд, белые карлики, неспособны совершать столь быстрые колебания. Возникает вопрос: могут ли звезды иметь еще более высокую плотность, звезды, оставляющие по плотности далеко позади белые карлики с их тоннами на кубический сантиметр?
Первые соображения на этот счет высказали один советский физик и два астронома из Пасадены задолго до обнаружения пульсаров. Лев Ландау (1908–1968) в 1932 г. доказал, что вещество с еще более высокой плотностью может находиться в равновесии с гравитационными силами. Тогда же в Пасадене на самом большом по тем временам телескопе в мире работал выходец из Германии Вальтер Бааде. Он был, несомненно, одним из лучших астрономов-наблюдателей нашего столетия. Там же работал и швейцарец Фриц Цвикки, человек столь же напористый, сколь и неистощимый на выдумки. Еще в 1934 г. эти два ученых утверждали, что смогут существовать звезды с исключительно высокой плотностью — как предсказывал и Ландау, — звезды, состоящие почти полностью из одних нейтронов. В 1939 г. физики Роберт Оппенгеймер и Джордж Волков поместили в американском физическом журнале «Physical Review» статью о нейтронных звездах. Имя одного из авторов этой статьи стало известно во всем мире задолго до того, как астрономы всерьез занялись нейтронными звездами: Оппенгеймер сыграл ведущую роль в создании американской атомной бомбы.
Оппенгеймер и Волков доказали, что звездное вещество, в котором электроны и протоны соединились в нейтроны, может удерживаться в виде шара собственными гравитационными силами. Зная свойства нейтронного вещества, можно осуществить теоретический расчет нейтронных звезд. Анализ математической модели нейтронной звезды показывает, что плотность ее должна быть очень велика: масса, равная солнечной, заключена в объеме шара с поперечником 30 километров в кубическом сантиметре содержатся миллиарды тонн нейтронной материи (рис. 8.9). Но нейтронные звезды, если заставить их осциллировать, будут делать это гораздо быстрее, чем пульсары. Поэтому в качестве объяснения периода пульсаров объемная осцилляция нейтронных звезд не подходит.
Рис. 8.9. Солнце, белый карлик, Земля и нейтронная звезда в сравнении между собой. От Солнца на рисунке поместился только край.
Итак, мы вновь вернулись к тому, с чего начали. Мы искали плотные звездоподобные объекты, которые могли бы совершать достаточно быстрые колебания, — и белые карлики оказались слишком медленными, а гипотетические нейтронные звезды слишком быстрыми.
Томас Голд объясняет пульсары