Чтение онлайн

на главную - закладки

Жанры

100 рассказов о стыковке. Часть 2
Шрифт:

Пока там наверху выясняли отношения, мы потеряли около полутора лет. Однако это было не единственной потерей. Оперативность принятия решений ухудшилась. Специалисты НАСА стали более активны, а у нас появился посредник.

Мы вернулись к проектированию модифицированной системы стыковки для второго полета фактически только через год, в конце 1994, когда разработка других систем подтянулась до нашего уровня. В феврале 1995 года к нам снова приехала большая группа специалистов из НАСА и «Роквелла», для того чтобы провести критическое рассмотрение конструкции (CDR) модифицированной системы. Мы рассмотрели, сделали «ревю» всему тому, что было спроектировано за полтора года. Спроектированной оказалась система с большими возможностями.

Дополнительно

к основному АПАС № 1 Спейс Шаттла появлялось еще два АПАСа № 2 и № 3, установленные на СО, которым требовалось управлять из кабины Орбитера. После соединения АПАС № 1 с АПАС № 2, установленным на СО, активным, действующим становился АПАС № 3. Именно этот третий АПАС должен был стыковать Орбитер с «Миром».

После завершения совместного полета снова требовалось переключить управление на АПАС № 1, для того чтобы расстыковаться, оставив СО присоединенным к модулю «Кристалл». Новая задача электрической переконфигурации осложнялась большим количеством электрических цепей, которые связывали АПАСы, авионику и пульт управления. Сначала требовалось вытащить электрические цепи из СО и снова втащить около 500 проводов во внешний шлюз Орбитера. Там, как известно, установлена авионика. Тогда снова вспомнили об электрических разъемах стыка, которые уже стояли на АПАСах модуля «Кристалл» и которые «за ненадобностью» выбросили из АПАСа Спейс Шаттла, когда проектировали его в 1992/1993 годах для первого полета. Чтобы не переделывать систему в целом, для того чтобы сохранить авионику, еще в конце 1993 года мы предложили и спроектировали специальный электромеханический переключатель с дистанционным управлением. В переключателе использовались те же самые электрические соединители, которые устанавливались на стыке АПАСов. Специальный привод разъединял одну группу разъемов и стыковал другую. В целом, получилась компактная и эффективная конструкция.

Осенью 1994 года с годовым опозданием запустили в производство аппаратуру системы стыковки для второго полета. Время было упущено, и заводчане, естественно, протестовали. На меня и моих коллег посыпались обвинения в неправильных технических решениях, в том, что мы опять не согласовали свои чертежи с генеральным конструктором. В. Рюмин, назначенный директором программы «Мульти–Мир», присоединился к общему хору наших недоброжелателей и даже стал требовать «крови». Однако Н. Зеленщиков, стоявший над всеми директорами программ, не поддержал инициативы.

Производственная машина закрутилась. Как бывало не раз, мы все же успели.

О том, как техника электрической переконфигурации пригодилась для МКС, будет рассказано дальше.

4.13 20 лет спустя: жаркое лето 1994 года

История повторялась удивительным образом снова и снова.

Летом 1974 года моя стыковочная команда пережила трудное, горячее время. Тогда мы почти не испытывали больших технических проблем, наш АПАС-75 функционировал очень хорошо при испытаниях в Хьюстоне в экстремальных условия очень высокой и очень низкой температуры. Тем не менее нашлись люди, которые сумели создать вокруг нас особую, почти экстремальную среду. Несмотря ни на что, мы сумели выстоять.

Двадцать лет спустя, летом 1994 года, судьба снова приготовила нам испытание. На этот раз проблемы возникли в инженерной сфере. На этот раз жаркое лето оказалось необычно длинным.

Случилось так, что трудности, технические проблемы накатывались на нас волнами, подобно непогоде — с нарастающей силой. В общей сложности этот тяжелый период растянулся на несколько месяцев.

Лето 1994 года даже по московским меркам выдалось холодным. В каком?то смысле это было хорошо. Уже в начале июня в цехах и лабораториях стало жарко, этот период совпал с пиком квалификационных испытаний АПАСа; «температура» окружающей среды резко повысилась.

Сначала, как и 20 лет назад, проблемы возникали при минусовых температурах. На морозе, при минус 50°С стыковочный

механизм, проходивший квалификацию, становился более жёстким. За прошедшие годы нам удалось усовершенствовать многие компоненты механизмов, но обмануть природу до конца было невозможно. В трудных случаях начальных условий стыковки на динамическом стенде «Конус» сцепки не происходило. В то же время, при более точном подходе, когда промах уменьшался, механизм функционировал удовлетворительно. Двадцать лет назад в Хьюстоне в аналогичной ситуации погоду делала техника, так как обе стороны были равно заинтересованы в поиске компромисса. Тогда быстро согласились квалифицировать оба АПАС-75, советский и американский, на более человеческие условия — нижнюю границу температур уменьшили до минус 35°С. В 1994 году расстановка сил изменилась, и НАСА стремилась выжать из АПАС-95 максимум возможного. Даже пресса, в лице журнала Aviation Week and Space Technology [Еженедельник «Авиация и космонавтика»], собрала на нас компромат, опубликовав статью о трудностях на «русском морозе» в июле 1994 года.

Дело усугубилось тем, что номинальная, рекомендуемая астронавтам скорость сближения орбитера при стыковке была выбрана существенно меньшей по сравнению с ЭПАСом, всего — 1/10 фута в секунду. Я пытался шутить (как всегда, защитная реакция в трудную минуту): не повезло нам, если бы «foot» составлял хотя бы полметра, то все было бы в порядке, да и пересчитывать футы в метры было бы гораздо проще. Надо отметить, что в целом подход российских и американских космических инженеров оказывался близким, и, в конце концов, мы находили пути к соглашению.

При определении возможного диапазона рабочих температур тепловики с обеих сторон оставались консервативными, слишком осторожными. Результат часто зависел от тех, кто определял температуру на орбите.

Тепловой анализ — это всегда непростая задача. Температура конструкции зависит от многих факторов: условий освещенности Солнцем и Землей, внутреннего тепловыделения, так называемых оптических характеристик открытых поверхностей, степенью их «черноты», как говорят физики. С другой стороны, начиная с первого спутника, конструкторы космических аппаратов всегда боролись за то, чтобы температура механизмов и других элементов была как можно ближе к нормальной, комнатной. Тепловики, так же как инженеры других аналитических специальностей, использующих математические модели, — люди, как правило, непростые. Руководителям проекта обычно трудно и некогда вникать в эти «темные» детали. В таких условиях специалисты имеют возможность перестраховываться: зачем рисковать? Энтропия человеческой ответственности стремится к максимуму, так же как в самих тепловых процессах.

Я часто вспоминал примеры из своей практики, как иногда прогнозировались температуры на орбите. В свое время мы с большим удивлением узнали, что согласно общим требованиям на корабль «Буран» его механизмы должны работать при температурах ±150°С. В очередной раз был повод посмеяться: если обеспечить работоспособность в этих условиях, всех тепловиков можно сразу уволить, их анализ больше не нужен. Я вспомнил эту шутку, когда на «Роквелле» обнаружил, что требования к аппаратуре Спейс Шаттла в отсеке полезного груза почти совпадали с нашими бурановскими. Нет, не случайно эти два корабля оказались так похожи друг на друга.

Все?таки жизнь вносила свои корректировки и сглаживала экстремизм. Был накоплен большой опыт в части прогнозирования тепловых условий наших конструкций на орбите. Например, это относилось к гидроразъемам дозаправки на стыковочном агрегате грузовика «Прогресс». Через них топливо перекачивается на орбитальную станцию. Эти гидроразъемы очень чувствительны к отрицательным температурам. В свое время от нас потребовали установить нагреватели, которые включались по командной радиолинии (КРЛ) за 2 часа до стыковки, если температура опускалась ниже минус 10°С. В течение долгих 15 лет стыковщики заранее приходили в ЦУП, но ни разу температура не падала ниже нуля.

Поделиться:
Популярные книги

Золотой ворон

Сакавич Нора
5. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Золотой ворон

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Последняя Арена 8

Греков Сергей
8. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 8

Эволюционер из трущоб. Том 6

Панарин Антон
6. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Эволюционер из трущоб. Том 6

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII

Дикая фиалка заброшенных земель

Рейнер Виктория
1. Попаданки рулят!
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Дикая фиалка заброшенных земель

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Страж Кодекса. Книга VII

Романов Илья Николаевич
7. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга VII

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI