Чтение онлайн

на главную - закладки

Жанры

100 великих чудес техники
Шрифт:

Для размещения спутника «Бонум-1» Государственной комиссией по радиочастотам было выдано разрешение на использование одной из российских позиций в диапазоне СНВ.

«Спутник – самый важный элемент системы, – пишет в журнале «Радио» Л. Кантор. – В системе СНВ используется спутник типа HS376, изготовленный американской компанией Hughes (кстати, их изготовлено уже более 50). Спутник высоконадежен, рассчитан на срок службы 12 лет. Конструкция его необычна. Он имеет форму цилиндра, по всей поверхности которого расположены элементы солнечной батареи. Вращение всего наружного «стакана» способствует стабилизации положения оси спутника в пространстве. Внутренняя часть спутника, на которой расположена приемно-передающая антенна, остается неподвижной (т

е. как бы вращается относительно наружного «стакана» в обратную сторону).

Спутник управляется со станции, расположенной под Москвой. Как показывает опыт, эксплуатационные его параметры поддерживаются с высокой точностью: погрешность сохранения позиции на орбите и наведения антенны существенно меньше заданной величины ±0,1 градуса. Для этого регулярно проводятся сеансы коррекции с помощью установленных четырех корректирующих двигателей и необходимого запаса топлива.

Наведение антенны спутника осуществляется либо по сигналу маяка, совмещенному с сигналами телеуправления, либо по диску Земли. Луч передающей антенны имеет специальную форму, соответствующую необходимой зоне обслуживания. Предусмотрена также возможность переключения передатчиков на второй облучатель, позволяющий сформировать зону восточнее основной. Полезная нагрузка спутника – восемь рабочих стволов с гибким резервом (из трех передатчиков), создающих в указанной зоне ЭИИМ не менее 50 дБВт. Все стволы работают круглосуточно, в том числе в периоды, когда спутник оказывается в тени Земли и его аппаратура питается от аккумуляторных батарей».

Современные телевизоры

Самым главным техническим достижением XX столетия, имеющим бытовое значение, французы назвали телевизор. В 1,5 раза меньше голосов собрал компьютер, в 2 раза меньше – мобильный телефон.

Современное телевидение, как это часто бывает, родилось из неглавного направления исследований, также, однако, представленного десятками имен. В 1907 году петербургский профессор физики (электроники тогда еще не было) Технологического института Борис Львович Розинг попытался запатентовать электронно-лучевую трубку в качестве приемника. Сначала изображение в электронно-лучевой трубке сканировалось, а затем передавалось принимающей трубке. В 1911 году Розинг усовершенствовал систему синхронизации передатчика и приемника и демонстрировал свой прибор публично, за что получил Золотую медаль Российского технического общества. Однако до бытового телевизора было еще далеко, предстояло решить множество технических проблем. Розинг «покушался» на них и даже пытался в 1925 году в СССР кое-что патентовать, но всех трудностей не преодолел. Это удалось его ученику Владимиру Козьмичу Зворыкину.

Начиная с 1910 года Владимир вел под руководством Розинга исследования в его лаборатории. После революции Зворыкин эмигрировал в США. В фирме «Вестингауз электрик» в Питтсбурге он приступил к реализации давно вынашиваемых идей электронного телевидения. С головой уйдя в работу, Зворыкин уже в 1923 году подал заявку на патент передатчика изображений с электронно-лучевой трубкой, содержащей пластинку, покрытую слоем фотоэлектрического материала. Впоследствии ему пришлось сожалеть о приведенном в заявке описании прибора, так как оно стало предметом длительного судебного разбирательства.

Свет от изображенного предмета вызывал электронные излучения различной интенсивности, зависящие от яркости объекта. Это электронное излучение усиливалось ионизацией паров аргона, которые заполняли контейнер. Таким образом, система Зворыкина позволяла передавать и получать телевизионное изображение чисто электронным путем, используя развертку изображения электронным лучом, без всякого механического движения. Это было существенным преимуществом зворыкинской системы, идея которой, как он сам все время подчеркивал, принадлежала Розингу.

В 1925 году, когда предыдущий патент еще гулял по бюрократическим инстанциям патентного управления США,

а автор тщетно пытался заменить в нем один фотоэлектрический материал другим, Зворыкин подал на патентование другой проект, относящийся уже к цветной системе телевидения. Этот проект прошел на удивление быстро: в 1927 году права Зворыкина были признаны в Великобритании, а в 1928-м – в США. Собственно, этого было уже достаточно, чтобы считаться изобретателем телевидения. Однако примерно в то же время ряд аналогичных проектов был запатентован или представлен на патентование в США, Великобритании, СССР, Франции, Германии и Японии. Сравнение их осложняется тем, что авторы использовали неустоявшуюся терминологию на своих языках, а порой скрывали наиболее важные элементы патента. Но система, созданная Зворыкиным, была, по-видимому, лучше доработана. Одно время казалось, что еще одно усилие, и система телевидения будет создана.

Все 1930-е годы прошли в ожесточенной конкурентной борьбе десятков создателей систем телевидения. Только в Соединенных Штатах над этим успешно работали Файло Фарнсуорт, Джон Бэйрд, Эдвин Армстронг и многие другие. А сюда нужно приписать француза Пьера Шевалье, немца Манфреда фон Арденне, японца Кенджиро Такаянаги…

Трудность объяснялась тем, что при развертке передаваемого изображения световое воздействие каждого его элемента на фоточувствительный слой происходит в течение всего лишь миллионных долей секунды. Возбуждаемый при этом фототок оказывается чрезвычайно малым, его усиление представлялось труднореализуемым технически. Задавшись целью найти способ накапливать заряд точечных фотоэлементов, Зворыкин получил в 1931 году специальную электронно-лучевую трубку с мозаичной фоточувствительной структурой – иконоскоп. После успешных испытаний иконоскопа изобретатель вместе со своими помощниками принялся за разработку телевизионной системы в целом. В 1933 году была создана телевизионная система с разложением на 240 строк, в 1934 году – на 343 строки с чересстрочной разверткой.

На доработку зворыкинской системы ушло дополнительно 10 миллионов долларов, прежде чем система заработала, и 40 миллионов, прежде чем она стала приносить доход. Но зато вскоре новая телевизионная система позволила передавать полноценные изображения, которые принимались на кинескопах тоже зворыкинской системы. Три камеры передающей системы помогли устроить прямую передачу с Олимпийских игр 1936 года из Берлина. Телевизионная аудитория была, правда, еще не очень велика: принимающая система механического типа стояла в специально снятом театре в Лондоне.

В конце 1938 года Зворыкин наконец-то получил патент на электронное телевидение, которого ждал пятнадцать лет, – да, это был тот самый патент 1923 года, причем всего поступило одиннадцать заявок на установление приоритета! И почти у каждого из заявителей были какие-то основания участвовать в этой гонке. Зворыкин доказал, что если и использовал достижения своих конкурентов, то делал это законно, купив право на них.

Многие десятилетия после появления телевидения ведущие производители телевизоров лишь совершенствовали их узлы и детали. Изображение становилось четче и контрастнее, цвета – насыщеннее, звук – чище и мощнее.

В первую очередь это достигалось за счет усовершенствования сердца телевизора – кинескопа. От его качества зависит совершенство аппарата в целом. Как известно, изображение на экране формируется из сотен тысяч светящихся люминофорных зерен, которые располагаются в виде чередующихся вертикальных полос зеленого, синего и красного цветов. Они светятся под воздействием электронных лучей, которыми «обстреливают» экран три электронные пушки, «отвечающие» каждая за свой цвет. Специальные электромагниты фокусируют и отклоняют потоки электронов, а для того чтобы каждый луч засвечивал зерна определенного цвета, служит конструкция с продолговатыми отверстиями (теневая маска), расположенная позади экрана. Пересекаясь в отверстиях маски, лучи попадают на зерна «своего» цвета.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 26

Сапфир Олег
26. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 26

Курсант: Назад в СССР 4

Дамиров Рафаэль
4. Курсант
Фантастика:
попаданцы
альтернативная история
7.76
рейтинг книги
Курсант: Назад в СССР 4

Новые горизонты

Лисина Александра
5. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Новые горизонты

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Третье правило дворянина

Герда Александр
3. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Третье правило дворянина

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Двойник Короля

Скабер Артемий
1. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля

Газлайтер. Том 17

Володин Григорий Григорьевич
17. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 17

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Гимназистка. Под тенью белой лисы

Вонсович Бронислава Антоновна
3. Ильинск
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Гимназистка. Под тенью белой лисы