Чтение онлайн

на главную - закладки

Жанры

100 великих событий ХХ века
Шрифт:

Открытие дейтерия может служить прекрасной иллюстрацией к парадоксальному на первый взгляд высказыванию французского физикохимика Анри Ле Шателье, обращенному к ученикам: «Ошибкой не только начинающих исследователей, но многих немолодых, весьма опытных и зачастую талантливых ученых является то, что они устремляют свое внимание на разрешение очень сложных проблем, для чего еще недостаточно подготовлена почва. Если вы хотите сделать нечто действительно большое в науке, если вы хотите создать нечто фундаментальное, беритесь за детальное обследование самых, казалось бы, до конца обследованных вопросов. Эти-то на первый взгляд простые и не таящие в себе ничего нового объекты и являются тем источником, откуда вы при умении сможете почерпнуть наиболее ценные

и порой неожиданные данные».

Американский физик Гарольд Юри

Действительно, что можно было ожидать от исследования физических свойств обыкновенной воды – они были изучены, как говорится, вдоль и поперек еще в XIX веке. Вспомним, однако, что проведенные в 1893 г. рутинные определения плотности газообразного азота, полученного разными методами, привели к выдающемуся открытию – сначала аргона, а за ним и других благородных газов…

Можно ли было надеяться обнаружить нечто новое в обычной воде? В начале XIX века лондонский врач и химик Уильям Праут опубликовал гипотезу, согласно которой из самого легкого элемента – водорода – могли возникнуть все остальные элементы путем конденсации. В этом случае атомные массы всех элементов должны быть кратны массе атома водорода. Атомные массы оказались дробными, гипотеза не подтвердилась, и химики часто осмеивали ее как ненаучную. В 1917 г. немецкий ученый К. Шерингер предположил, что атомы разных элементов построены не только из протия (от греч. protos – первый), т. е. «легкого» водорода с атомной массой 1, а из разных изотопов водорода. К тому времени уже было известно, что один и тот же элемент может иметь изотопы с разной массой. Впечатляющих успехов в открытии большого числа изотопов нерадиоактивных элементов достиг английский физик Френсис Астон с помощью сконструированного им масс-спектрографа. В этом приборе изучаемые атомы или молекулы бомбардируются пучком электронов и превращаются в положительно заряженные ионы. Пучок этих ионов далее подвергается действию электрического и магнитного поля, и их траектории отклоняются от прямой. Это отклонение тем сильнее, чем больше заряд иона и чем меньше его масса.

Гипотеза Шерингера предполагала, что и у самого легкого элемента – водорода – тоже могут быть изотопы. Однако попытки обнаружить тяжелый водород оставались безуспешными еще в течение многих лет. У имевшегося в распоряжении Астона прибора не хватало чувствительности.

В 1927 г. Астон очень точно для того времени измерил отношение масс атомов водорода и кислорода-16, при этом выяснилось, что природный кислород – плохой эталон для измерения атомных масс, поскольку кислород представляет собой смесь изотопов. Затем появилось предположение о том, что и в обычном водороде имеется более тяжелый изотоп. Расчеты показали, что на 5000 атомов обычного водорода 1H должен приходиться всего один атом его вдвое более тяжелой разновидности 2Н. Дело оставалось за малым – обнаружить этот изотоп экспериментально. Учитывая чувствительность имевшейся в то время аппаратуры, выход был один: сконцентрировать тяжелый водород, увеличив тем самым его содержание в обычном водороде, – примерно так же, как концентрируют спирт, перегоняя его смесь с водой. После этого можно было снова попытаться обнаружить тяжелый изотоп водорода аналитически.

В конце 1931 г. американские физики Гарольд Юри и его ученики Брикведде и Мерфи взяли 4 л жидкого водорода и подвергли его фракционной перегонке; оставшийся 1 миллилитр жидкости был исследован спектроскопическим методом. Гарольд Юри заметил на спектрограмме обогащенного водорода новые очень слабые линии, отсутствующие у обычного водорода. При этом положение линий в спектре точно соответствовало проведенному им квантово-механическому расчету предполагаемого атома 2H. Новый изотоп Юри назвал дейтерием.

Пытаясь оценить так называемый коэффициент обогащения при испарении жидкого водорода, исследователи поняли, что в своих опытах использовали самый неподходящий источник водорода. Дело

в том, что он был получен, как обычно, путем электролиза воды. А ведь при электролизе легкий водород должен выделяться быстрее, чем тяжелый. Получается, что образец был сначала обеднен тяжелым водородом, а затем снова обогащался им!

После того как дейтерий был обнаружен спектроскопически, Эдвард Уошберн предложил разделять изотопы водорода электролизом. Эксперименты подтвердили перспективность предложенного способа получения тяжелого водорода. Статья, в которой сообщалось об открытии дейтерия, была напечатана весной 1932 г., а уже в июле были опубликованы результаты по электролитическому разделению изотопов.

В 1934 г. за открытие тяжелого водорода Юри была присуждена Нобелевская премия по химии. (Уошберн тоже был представлен к премии, но скончался в том же году, а по положению о Нобелевских премиях они вручаются только прижизненно.)

Когда был открыт нейтрон, стало ясно, что удваивает массу ядра дейтерия именно он. В среднем в природном водороде содержится 0,0156 % дейтерия. По химическим свойствам дейтерий схож с протием, но огромное различие в их массах приводит к заметному замедлению реакций с участием атомов дейтерия. С помощью дейтерия можно «пометить» водородсодержащие молекулы и детально изучить механизмы их реакций.

После фундаментальных работ Уошберна и Юри исследования нового изотопа стали развиваться быстрыми темпами. Уже вскоре после открытия дейтерия в природной воде была обнаружена ее тяжелая разновидность. Обычная вода состоит в основном из молекул Н2О. Но если в природном водороде есть примесь дейтерия, то и в обычной воде должны быть примеси НDO и D2O. И если при электролизе воды водород Н2 выделяется с большей скоростью, чем НD и D2, то со временем в электролизере должна накапливаться тяжелая вода. В 1933 г. Гилберт Льюис и Роналд Макдональд сообщили, что в результате длительного электролиза обычной воды им удалось получить не виданную никем до этого новую разновидность воды – тяжелую воду.

Открытие и выделение весовых количеств новой разновидности воды – D2O – произвело большое впечатление на современников. Всего за два года после открытия было опубликовано более сотни работ, посвященных исключительно тяжелой воде. О ней читались популярные лекции, печатались статьи в массовых изданиях. Практически сразу же после открытия тяжелую воду стали использовать в химических и биологических исследованиях. Так, было обнаружено, что рыбы, микробы и черви не могут существовать в ней, а животные погибают от жажды, если их поить тяжелой водой. Не прорастают в тяжелой воде и семена растений.

Однако технически получение значительных количеств D2О представляло собой трудную задачу. Для обогащения воды дейтерием на 99 % необходимо уменьшить объем воды при электролизе в 100 тысяч раз. Льюису и Макдональду путем поэтапного электролиза в ячейках уменьшающегося размера удалось, наконец, получить 0,3 мл воды, плотность которой (1,1059 при 25 °C) достигла предела. Эти несколько капель и были первые за всю историю Земли капли почти чистой тяжелой воды.

Соответствующие расчеты показали, что прежние оценки соотношения обычного и тяжелого водорода в природе были слишком оптимистическими: оказалось, что в обычной воде содержится всего 0,017 % (по массе) дейтерия, что дает соотношение D: Н = 1:6800.

Чтобы получать заметные количества тяжелой воды, необходимой ученым для исследований, необходимо было подвергать электролизу уже огромные по тем временам объемы обычной воды. А тут выяснилось, что тяжелая вода является прекрасным замедлителем нейтронов и потому может быть использована в ядерных исследованиях, в том числе для построения ядерных реакторов. Спрос на тяжелую воду вырос настолько, что стала ясна необходимость налаживания ее промышленного производства. Трудность состояла в том, что для получения 1 тонны D2O необходимо переработать около 40 тысяч тонн воды, израсходовав при этом 60 млн кВт-ч электроэнергии – столько уходит на выплавку 3000 т алюминия!

Поделиться:
Популярные книги

Ученик. Книга 4

Первухин Андрей Евгеньевич
4. Ученик
Фантастика:
фэнтези
5.67
рейтинг книги
Ученик. Книга 4

Новые горизонты

Лисина Александра
5. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Новые горизонты

Скандальный развод, или Хозяйка владений "Драконье сердце"

Милославская Анастасия
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Скандальный развод, или Хозяйка владений Драконье сердце

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Любимая учительница

Зайцева Мария
1. совершенная любовь
Любовные романы:
современные любовные романы
эро литература
8.73
рейтинг книги
Любимая учительница

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Последняя Арена 9

Греков Сергей
9. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 9

Инвестиго, из медика в маги. Том 6. Финал

Рэд Илья
6. Инвестиго
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Инвестиго, из медика в маги. Том 6. Финал

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

На границе империй. Том 9. Часть 4

INDIGO
17. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 4

Отвергнутая невеста генерала драконов

Лунёва Мария
5. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отвергнутая невеста генерала драконов

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)