Чтение онлайн

на главную - закладки

Жанры

120 практических задач
Шрифт:

model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))

model.add(BatchNormalization)

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten)

# Recurrent layers

model.add(LSTM(128, return_sequences=True))

model.add(LSTM(128))

# Dense layers

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.3))

model.add(Dense(num_classes, activation='softmax')) # num_classes – количество классов для классификации

# Компиляция модели

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

#

Вывод архитектуры модели

model.summary

```

Пояснение архитектуры:

1. Convolutional layers: Слои свертки помогают извлекать пространственные признаки из спектрограмм аудио.

2. Recurrent layers: LSTM слои обрабатывают последовательности признаков, извлеченных из спектрограммы. В данном примере используется два LSTM слоя.

3. Dense layers: Полносвязные слои используются для классификации или распознавания текста, в зависимости от задачи.

4. Компиляция модели: Модель компилируется с оптимизатором Adam и функцией потерь `sparse_categorical_crossentropy` для многоклассовой классификации.

Преимущества использования нейронных сетей для распознавания речи

– Учет временных зависимостей: RNN и LSTM способны учитывать контекст и последовательность речи.

– Извлечение признаков: CNN помогает извлекать пространственные признаки из спектрограмм.

– Адаптивность к различным условиям: Нейронные сети могут быть настроены на различные голосовые окружения и акценты, благодаря большому количеству данных для обучения.

Этот подход позволяет создать эффективную модель для преобразования аудио в текст, что находит широкое применение в различных областях, таких как голосовые помощники, транскрибация аудиофайлов, распознавание речи в реальном времени и другие приложения, требующие обработки речевых данных.

14. Обнаружение аномалий в данных с помощью автоэнкодера

– Задача: Поиск аномалий в финансовых транзакциях.

Обнаружение аномалий в данных с использованием автоэнкодера – это мощный подход, особенно в задачах, где необходимо выявлять необычные или подозрительные образцы в данных, таких как финансовые транзакции. Автоэнкодеры используются для создания моделей, которые могут восстанавливать нормальные (обычные) образцы данных, и при этом выделять аномальные, не типичные образцы.

Построение автоэнкодера для обнаружения аномалий в финансовых транзакциях

1. Подготовка данных

Прежде всего необходимо подготовить данные:

– Загрузить и предобработать данные финансовых транзакций.

– Нормализовать данные для улучшения производительности обучения модели.

– Разделить данные на обучающую и тестовую выборки.

2. Построение модели автоэнкодера

Рассмотрим архитектуру автоэнкодера, который может быть использован для обнаружения аномалий в финансовых

транзакциях:

– Энкодер: Преобразует входные данные в скрытое представление меньшей размерности.

– Декодер: Восстанавливает данные из скрытого представления обратно в оригинальные данные.

Пример архитектуры нейронной сети для автоэнкодера:

```python

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense

# Пример архитектуры автоэнкодера для обнаружения аномалий в финансовых транзакциях

# Подготовка данных (вымышленный пример)

# X_train – обучающие данные, X_test – тестовые данные

# Данные предварительно должны быть нормализованы

input_dim = X_train.shape[1] # размер входных данных

# Энкодер

input_layer = Input(shape=(input_dim,))

encoded = Dense(32, activation='relu')(input_layer)

encoded = Dense(16, activation='relu')(encoded)

# Декодер

decoded = Dense(32, activation='relu')(encoded)

decoded = Dense(input_dim, activation='sigmoid')(decoded)

# Модель автоэнкодера

autoencoder = Model(input_layer, decoded)

# Компиляция модели

autoencoder.compile(optimizer='adam', loss='mse')

# Обучение модели на обычных (нормальных) образцах

autoencoder.fit(X_train, X_train,

epochs=50,

batch_size=128,

shuffle=True,

validation_data=(X_test, X_test))

# Использование автоэнкодера для предсказания на тестовых данных

predicted = autoencoder.predict(X_test)

# Рассчитываем ошибку реконструкции для каждого образца

mse = np.mean(np.power(X_test – predicted, 2), axis=1)

# Определение порога для обнаружения аномалий

threshold = np.percentile(mse, 95) # например, выбираем 95-й процентиль

# Обнаружение аномалий

anomalies = X_test[mse > threshold]

# Вывод аномалий или дальнейшее их анализ

print(f"Найдено {len(anomalies)} аномалий в данных.")

```

Пояснение архитектуры и процесса:

1. Архитектура автоэнкодера: Модель состоит из двух частей: энкодера и декодера. Энкодер уменьшает размерность данных, представляя их в скрытом пространстве меньшей размерности. Декодер восстанавливает данные обратно в оригинальную размерность.

2. Компиляция и обучение: Модель компилируется с использованием оптимизатора Adam и функции потерь MSE (Mean Squared Error), затем обучается на обычных (нормальных) образцах.

3. Определение порога для обнаружения аномалий: После обучения модели рассчитывается среднеквадратичная ошибка (MSE) между входными данными и их реконструкциями. Затем определяется порог, например, на основе перцентиля ошибок, для обнаружения аномальных образцов.

4. Обнаружение аномалий: Образцы, для которых ошибка восстановления выше заданного порога, считаются аномальными.

Поделиться:
Популярные книги

Надуй щеки! Том 3

Вишневский Сергей Викторович
3. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 3

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Страж Кодекса. Книга VI

Романов Илья Николаевич
6. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга VI

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Жизнь в подарок

Седой Василий
2. Калейдоскоп
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Жизнь в подарок

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

На границе империй. Том 2

INDIGO
2. Фортуна дама переменчивая
Фантастика:
космическая фантастика
7.35
рейтинг книги
На границе империй. Том 2

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV