Чтение онлайн

на главную - закладки

Жанры

200 знаменитых головоломок мира
Шрифт:

120. Китайская шахматная доска. На какое максимальное число различных частей можно разрезать шахматную доску (все разрезы проводятся только вдоль линий) так, чтобы при этом никакие две части не оказались полностью одинаковыми? Помните, что части, отличающиеся расположением черных и белых клеток, считаются различными. Так, единственная белая клетка отличается от единственной черной клетки; ряд из трех клеток, две из которых белые, а одна черная, отличается от такого же ряда с двумя черными и одной белой клетками и т. д. Если две части нельзя расположить на столе так, чтобы они выглядели совершенно одинаковыми, то они считаются различными; а поскольку на обратной стороне доски рисунок не нанесен, то части нельзя переворачивать другой стороной кверху.

121. Буквы из шахматных клеток. Однажды я развлекался тем, что пытался

разрезать обыкновенную шахматную доску на буквы, из которых удалось бы сложить какую-нибудь фразу. На рисунке видно, как мне удалось составить предложение CUT ТНУ LIFE[23] с точками между словами. Однако идеальное предложение должно было бы содержать, конечно, лишь одну точку, но мне не удалось его получить.

Эта фраза представляет собой призыв к преступнику покончить с той полной зла жизнью, которую он ведет. Сможете ли вы опять сложить из этих букв правильную шахматную доску?

Статические шахматные головоломки

122. Восемь ладей. На рисунке а видно, что каждая клеточка доски либо занята, либо находится под угрозой нападения одной из ладей и что каждая ладья «защищена» (если бы они были попеременно белыми и черными, то мы бы сказали «атакована») другой ладьей. Поместив 8 ладей на любую горизонталь или вертикаль, мы получим тот же эффект. На рисунке б каждая клетка снова либо занята, либо находится под угрозой, но в этом случае каждая ладья не защищена. Теперь скажите, сколькими различными способами 8 ладей можно расположить на шахматной доске так, чтобы при этом каждая клетка оказалась либо занятой, либо под угрозой нападения, но чтобы ни одна ладья не была защищена другой ладьей? Я не хочу здесь вдаваться в вопросы, касающиеся отражений и поворотов, так что если вы расположите ладьи на другой диагонали, то это будет считаться другим расположением, аналогичным образом обстоит дело и с расположениями, получающимися из некоторого расположения с помощью поворотов.

123. Четыре льва. Эта головоломка состоит в том, чтобы выяснить, сколькими различными способами можно расположить четырех львов так, чтобы при этом на любой горизонтали и вертикали находилось не более чем по одному льву. Отражения и повороты не считаются различными. Так, в приведенном на рисунке примере расположение львов вдоль второй диагонали мы не будем считать отличным от исходного. Действительно, если вы поднесете второе расположение к зеркалу или повернете его на четверть полного оборота, то получите первое расположение. Это простая маленькая головоломка, но она требует некоторого внимания.

124. Незащищенные слоны. Расположите наименьшее число слонов на обычной шахматной доске таким образом, чтобы каждая клетка оказалась либо занятой, либо под угрозой нападения. Можно заметить, что ладья в этом отношении более могуча, чем слон, ибо, где бы она ни располагалась, под ее угрозой всегда находятся 14 клеток, тогда как под угрозой слона может находиться 7, 9, 11 или 13 клеток в зависимости от того, на какой диагонали он стоит. Здесь нелишне напомнить, что, говоря о диагоналях шахматной доски, мы не ограничиваемся двумя большими диагоналями, соединяющими противоположные ее углы, а имеем в виду и более короткие прямые, параллельные этим большим диагоналям. Читателю стоит хорошенько это запомнить, дабы избежать недоразумений в будущем.

125. Защищенные слоны. Сколько теперь потребуется слонов, чтобы каждая клетка оказалась либо занятой, либо под угрозой, а каждый слон находился под защитой другого слона?

126. Собрание слонов. Наибольшее число слонов, которых можно поместить на одной шахматной доске так, чтобы ни один слон не атаковал другого, равно 14. На рисунке показано простейшее расположение такого типа.

Фактически

на квадратной доске любого размера число слонов, которых можно расположить так, чтобы они не атаковали друг друга, всегда на 2 меньше удвоенного количества клеток, расположенных вдоль одной из ее сторон. Интересная головоломка состоит в том, чтобы определить, сколькими различными способами 14 слонов можно расположить на обычной шахматной доске так, чтобы они не атаковали друг друга. Я приведу крайне простое правило, позволяющее определить число таких способов для доски любого размера.

127. Восемь ферзей. Ферзь на шахматной доске — куда более сильная фигура, чем слон. Если вы поместите ферзя на один из четырех квадратов в центре доски, то под его угрозой окажется не менее чем 27 других клеток, а если вы попытаетесь запрятать его в угол, то все равно он будет атаковать 21 клетку. Восемь ферзей можно расположить на доске таким образом, чтобы ни один из них не атаковал другого. Существует старая головоломка (впервые предложенная Науком в 1850 г.), которая состоит в том, чтобы определить число различных способов, какими это можно сделать. Один такой способ приведен на рисунке, а всего число существенно различных способов равно 12. Если же мы будем считать повороты и отражения различными способами, то из этих 12 образуется 92 способа. Расположение, приведенное на рисунке, обладает определенной симметрией. Если вы перевернете страницу вверх-ногами, то получите то же самое расположение, однако если вы повернете доску так, чтобы внизу оказалась одна из боковых сторон, то получите расположение, отличное от исходного. Если вы зеркально отразите эти 2 расположения, то получите еще 2 способа. Далее: все другие 11 расположений несимметричны, и, следовательно, из каждого из них с помощью таких поворотов и отражений получается по 8 способов. Таким образом, становится понятно, почему 12 существенно различных решений порождают 92 расположения, как я уже говорил, а не 96, как получилось бы, если бы все 12 решений оказались несимметричными. Следует ясно представлять себе природу поворотов и отражений, когда имеешь дело с головоломками на шахматной доске.

Сумеет ли читатель расположить 8 ферзей на шахматной доске таким образом, чтобы ни один из них не атаковал другого и чтобы никакие 3 ферзя не располагались ни на какой наклонной прямой одновременно? Взглянув еще раз на рисунок, мы можем заметить, что приведенное там расположение не удовлетворяет нужным условиям, поскольку на двух наклонных прямых, указанных пунктиром, располагается по три ферзя? Среди 12 существенных решений есть только одно, удовлетворяющее нашему дополнительному условию. Сможете ли вы найти его?

128. Восемь звезд. В этой головоломке 8 звезд нужно расположить на приведенной на рисунке доске так, что бы ни одна звезда не оказалась на одной горизонтали, вертикали или диагонали с другой. Вы видите, что одна звезда уже поставлена в клетку, передвигать ее нельзя, поэтому читателю придется расставить лишь 7 остальных звезд. Но вы не должны помещать звезды на заштрихованные клетки. Существует только одно решение данной головоломки.

129. Мозаика. Искусство создания рисунков или узоров из кусочков по-разному окрашенных твердых материалов очень и очень древнее. С ним, безусловно, были знакомы во времена фараонов, а в библейской книге Эсфири мы находим упоминание о «мостовых из красного, и голубого, и белого, и черного мрамора». Некоторые из дошедших до нас древних мозаик, особенно римских, показывают, что даже там, где геометрический узор и не бросается в глаза, над внешне беспорядочными расположениями их создатели в свое время изрядно поломали голову. Особенно в тех случаях, когда работа выполнялась с ограниченным числом цветов, они свидетельствуют об удивительной изобретательности, благодаря которой удалось добиться того, чтобы одинаковые оттенки не располагались вблизи друг друга. Читательницы, знакомые с искусством шитья всевозможных лоскутных одеял, покрывал, подушек и т. п., знают, сколь желательно при ограниченном выборе материала избежать близкого расположения одинаковых кусочков ткани. Наша головоломка в равной мере может относиться и к лоскутным одеялам, и, например, к выложенному плитками полу.

Поделиться:
Популярные книги

Жандарм 3

Семин Никита
3. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 3

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Месть Пламенных

Дмитриева Ольга
6. Пламенная
Фантастика:
фэнтези
6.00
рейтинг книги
Месть Пламенных

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам

Развод, который ты запомнишь

Рид Тала
1. Развод
Любовные романы:
остросюжетные любовные романы
короткие любовные романы
5.00
рейтинг книги
Развод, который ты запомнишь

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Истинная поневоле, или Сирота в Академии Драконов

Найт Алекс
3. Академия Драконов, или Девушки с секретом
Любовные романы:
любовно-фантастические романы
6.37
рейтинг книги
Истинная поневоле, или Сирота в Академии Драконов

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда

Город Богов

Парсиев Дмитрий
1. Профсоюз водителей грузовых драконов
Фантастика:
юмористическая фантастика
детективная фантастика
попаданцы
5.00
рейтинг книги
Город Богов

Жандарм 2

Семин Никита
2. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 2

Господин следователь. Книга 3

Шалашов Евгений Васильевич
3. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга 3