Чтение онлайн

на главную - закладки

Жанры

200 знаменитых головоломок мира
Шрифт:

140. Слон находится на клетке, занятой первоначально ладьей, а 4 ферзя расположены таким образом, что каждая клетка либо занята, либо оказывается под угрозой нападения одной из фигур (см. рисунок а).

Если 4 ферзя расположены, как показано на рисунке б, то пятого ферзя можно поместить на любую из 12 клеток, помеченных буквами a, b, с, d и е; либо можно поставить ладью на две клетки с; либо слона на 8 клеток а, b и е; либо пешку на клетку b;

либо короля на четыре клетки b, с и е. Единственное известное расположение четырех ферзей и коня, принадлежащее Дж. Уоллису, приведено на рисунке в.

Я нашел большое число решений для случая четырех ферзей и ладьи или слона, но единственным решением, как я полагаю, с тремя ферзями и двумя ладьями, при котором все фигуры защищены, будет решение (см. рисунок г), впервые опубликованное доктором К. Плэнком. Однако с тех пор я нашел дополнительное решение для случая трех ферзей, ладьи и слона, хотя фигуры и не защищают друг друга (см. рисунок д).

141. Мои читатели привыкли к тому, что требуется по меньшей мере 5 планет, дабы атаковать каждую из 64 звезд, расположенных в виде квадрата, а потому многие из них, быть может, полагают, что в случае большего квадрата потребуется увеличить число планет. Именно с целью изменить это ошибочное мнение, а также предостеречь читателей от еще одного из тех многочисленных подводных камней, которыми полон мир головоломок, я и придумал эту новую задачу со звездами. Позвольте мне сразу же заметить, что в случае квадратного расположения 81 звезды существует несколько искомых расположений. На рисунке приведено решение головоломки «Южный Крест».

Стоит вспомнить, что в условии говорилось: «Разумеется, после перестановки они закроют 5 новых звезд, отличных от тех, которые закрыты сейчас». Это было сделано для того, чтобы исключить более простое решение, в котором передвигаются лишь 4 планеты.

142. Передвижения ферзей ясны из приведенных здесь рисунков 1—4, которые показывают положение на доске после каждого перемещения. В итоге все клетки оказываются либо занятыми, либо под ударом, но ни один ферзь не угрожает другому ферзю. На последнем шаге ферзя в верхнем ряду можно было бы передвинуть еще на одну клетку дальше влево. Это, как я полагаю, единственное решение данной головоломки.

143. На рисунке можно заметить, что только 3 ферзя передвинуты с их первоначального положения на краю доски и что в результате 11 клеток (отмеченных черными точками) не находятся под угрозой нападения. Я рискну утверждать, что 8 ферзей нельзя расположить на шахматной доске таким образом, чтобы остались неатакованными более чем 11 клеток. И хотя строгое доказательство этого факта отсутствует, я полностью уверен в справедливости данного утверждения. Существует по меньшей мере 5 различных расположений, при которых остаются неатакованными 11 клеток.

144. Шестнадцать пешек можно расположить таким образом, чтобы никакие три из них не оказались на одной прямой, идущей в любом направлении (см. рисунок). Как и требовалось в условии, мы рассматриваем пешки просто как точки на плоскости.

145. Существует 6480 способов,

которыми можно разместить человека и льва при единственном ограничении, что они располагаются в разных местах. Это очевидно, ибо человека можно поставить на любое из 81 места, и в каждом случае остается 80 мест для льва; следовательно, 81 х 80 = 6480. Далее: если мы вычтем отсюда число способов, при которых человек и лев оказываются на одной тропе, то в результате получится число способов, при которых они не располагаются на одной тропе. Число способов, при которых они оказываются на одной тропе, равно, как можно установить без особых затруднений, 816. Следовательно, искомый ответ равен 6480 — 816 = 5664.

Решением в общем случае будет

n(n — 1)(3n2 — n + 2).

Это, разумеется, эквивалентно тому, как если бы мы сказали, что при условии, что на стороне шахматной доски расположено n клеток, на ней можно разместить двух слонов указанным числом способов, при которых они не атакуют друг друга. Только в таком случае ответ нужно было бы уменьшить вдвое, поскольку два слона не отличаются друг от друга, и, поменяв их местами, мы не получим нового решения.

146. Наименьшее возможное число коней при данных условиях равно 14. Иногда полагают, что существует очень много различных решений. Кстати, существуют лишь 3 расположения, если не учитывать повороты и отражения. Довольно удивительно, что, по-видимому, никому в голову не пришло следующее простое доказательство и никто не догадался действовать с белыми и черными клетками по отдельности.

Семь коней можно расположить на белых клетках так, чтобы они атаковали каждую черную клетку лишь двумя способами. Они показаны на рисунках 1 и 2. Обратите внимание, что в обоих случаях 3 коня занимают одинаковые положения.

Следовательно, ясно, что если вы повернете доску так, чтобы в левом верхнем углу оказалась черная клетка, и поставите коней на те же самые места, то у вас получатся два похожих способа атаки всех белых квадратов. Я предположу, что читатель выполнил два последних описанных рисунка на кальке, и обозначу их 1а и 2а. Теперь, наложив рисунок 1а на рисунок 1, вы получите решение на рисунке 3, наложив рисунок 2а на рисунок 2, вы получите рисунок 4, а наложив рисунок 2а на рисунок 1, получите рисунок 5.

Вы можете теперь перебрать все возможные комбинации этих двух пар рисунков, и при этом вы получите лишь те 3 решения, которые я привел, а также решения, получающиеся из них с помощью поворотов и отражений. Следовательно, существуют только эти 3 решения.

147. Два единственно возможных минимальных решения приведены на двух рисунках, где, как можно заметить, требуется лишь 16 ходов. Для большинства окажется трудным сделать число ходов меньше 17.

148. Путь показан на рисунке. Можно заметить, что десятый ход приводит нас в клетку, отмеченную числом 10, а последний, 21-й ход заканчивается в клетке 21.

149. Пунктирная линия показывает путь, состоящий из 22 прямолинейных отрезков, которым рыцарь добрался до девы. Необходимо, войдя в первую камеру, немедленно вернуться назад, прежде чем войти в другую камеру. Иначе вам не удастся найти решение.

Поделиться:
Популярные книги

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Метатель. Книга 3

Тарасов Ник
3. Метатель
Фантастика:
попаданцы
альтернативная история
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 3

Наваждение генерала драконов

Лунёва Мария
3. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наваждение генерала драконов

Душелов. Том 4

Faded Emory
4. Внутренние демоны
Фантастика:
юмористическая фантастика
ранобэ
фэнтези
фантастика: прочее
хентай
эпическая фантастика
5.00
рейтинг книги
Душелов. Том 4

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение

Честное пионерское! Часть 4

Федин Андрей Анатольевич
4. Честное пионерское!
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Честное пионерское! Часть 4

Блуждающие огни 4

Панченко Андрей Алексеевич
4. Блуждающие огни
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 4

"Сломанная подкова" Таверна у трёх дорог

Скор Элен
1. Попаданка в деле
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Сломанная подкова Таверна у трёх дорог

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9