Чтение онлайн

на главную - закладки

Жанры

50 лет советской физики

Лешковцев Владимир Алексеевич

Шрифт:

В конце 40-х годов ученым казалось, что ускорители имеют очень жесткие пределы энергии, которую они способны сообщать разгоняемым частицам.

У циклотрона этот предел связан с релятивистским эффектом увеличения массы со скоростью. Так, уже при 100 млн. эв масса ядра тяжелого водорода на 5 % больше его массы покоя. Как известно, условием синхронизма для частиц, ускоряемых в циклотроне, является соотношение

При возрастании массы m частица начинает отставать по фазе от фазы

напряжения генератора. В конце концов частица начинает приходить в ускоряющий промежуток между дуантами в момент, когда электрическое поле оказывает не ускоряющее, а тормозящее воздействие.

Казалось бы, что у бетатрона, где релятивистское возрастание массы не влияет на режим ускорения, так как масса не входит в условие стабильности орбиты ускоряемых электронов, нет никакого принципиального предела энергиям ускоряемых частиц. Но как показали советские физики, такой предел имеет и бетатрон. Ведь по законам электродинамики электрон, двигаясь по окружности, находится под действием ускорения и потому обязан излучать энергию. Это «лучистое трение» чрезвычайно возрастает с ростом энергии выше некоторого предела. Оно заставляет электроны быстро сбрасывать всю избыточную энергию. По подсчетам этот предел лежит вблизи 500 Мэв, но уже при энергии порядка 30 Мэв электроны создают яркое голубовато-белое свечение, уносящее значительную долю их энергии.

Выходило так, что нечего и мечтать об ускорителях на энергии в миллиарды электрон-вольт. Но ведь они уже действуют!

Создание современных ускорителей на десятки и сотни миллиардов электрон-вольт стало возможным благодаря работам советского физика академика Владимира Иосифовича Векслера. В 1944 г. он предложил знаменитый принцип «автофазировки» ускоряемых частиц, открывший новые горизонты перед ядерной физикой и физикой элементарных частиц. Им было показано, что при достаточно медленном изменении частоты ускоряющего электрического поля или напряженности удерживающего магнитного поля частицы как бы переходят с одной устойчивой орбиты на другую без нарушения основного синхронизма. Этот принцип позволил создать новые типы ускорителей: фазотроны (с изменением частоты электрического поля), синхротроны (с изменением напряженности магнитного поля) и синхрофазотроны (комбинация обоих принципов).

Другой крупный и важный вклад в создание новых типов ускорителей заряженных частиц был сделан недавно академиком Гершем Ицковичем Будкером.

Во всех ускорителях поток ускоренных частиц направляется на неподвижную мишень. При этом значительная доля энергии бомбардирующих частиц расходуется не на взаимодействие, а на ускорение частиц мишени. Ударяя по камню молотком, мы неизбежно расходуем часть энергии на движение камня. Если массы молотка и камня равны, только половина энергии может быть, использована на разрушение камня. Чем тяжелее молоток и чем легче камень, тем меньше и доля энергии, затрачиваемой на разрушение. Эти потери энергии особенно велики при релятивистских скоростях, когда масса частицы резко возрастает. Протоны, ускоренные до энергии в 1 Бэв, могут использовать на взаимодействие с частицами неподвижной мишени только 0,43 Бэв, а при 100 Бэв эта доля составит лишь 10,5 Бэв. Таким образом, стократное увеличение энергии ускоренных частиц приводит лишь к двадцатикратному увеличению полезной (эффективной) энергии взаимодействия. Так как увеличение энергии частиц резко увеличивает стоимость ускорителя, этот эффект оказывается крайне неприятным обстоятельством. В ускорителях на встречных пучках, впервые построенных под руководством академика Г. И. Будкера в Новосибирске, мишень состоит из встречного потока частиц, движущихся с такой же скоростью, что и бомбардирующие частицы. При этом даже скромные энергии частиц каждого пучка приводят к огромным эффективным энергиям столкновения. Например, в установке на встречных электрон-электронных пучках с энергией всего лишь в 160 Мэв

суммарная энергия взаимодействия оказалась равной 100 Бэв. А в ускорителе на встречных электрон-позитронных пучках эффективная энергия соударения достигает 2000 Бэв!

Реализация этой простой идеи наталкивалась на огромные технические трудности, связанные прежде всего с тем, что плотность частиц в ускоренном пучке ничтожно мала и вероятность столкновения частиц встречных пучков значительно меньше вероятности столкновения пуль, выпущенных навстречу друг другу из двух далеких друг от друга пулеметов. Для того чтобы ускоритель на встречных пучках стал действительно полезным экспериментальным устройствам, пришлось создать специальные накопители ускоренных частиц и найти способы резкого уплотнения пучков. Все это позволило нашим ученым создать уникальные ускорители со сравнительно небольшими затратами средств.

За создание ускорителей на встречных пучках академик Г. И. Будкер, член-корреспондент АН СССР А. А. Наумов и трое сотрудников Института ядерной физики Сибирского отделения Академии наук СССР были удостоены Ленинской премии за 1966 г.

ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ

Периодическая система природных элементов, как известно, обрывается на 92-м члене. Самым тяжелым природным элементом является уран. Ни на Земле, ни в приходящих из космоса метеоритах никто не находил каких-либо заметных следов более тяжелых элементов. Но почему?

Чем тяжелее элемент, тем больше протонов в его ядрах, тем меньше прочность ядер. Действительно, все элементы конца Периодической системы являются неустойчивыми. Они радиоактивны и превращаются друг в друга в цепочке последовательных α- и β-распадов. Если бы в природе и были элементы более тяжелые, чем уран, то они несомненно распались бы полностью за те несколько миллиардов лет, которые Земля уже успела прожить. Проведенные подсчеты показывают, что среди элементов с Z>92 практически нет таких, которые могли бы сохраниться за столь долгие сроки.

Но нельзя ли искусственно продлить периодическую систему, получить «заурановые» элементы? Оказывается, что это вполне возможно.

Первые трансурановые элементы — нептуний и плутоний — были получены американцами в 1940 г. при бомбардировке урана нейтронами и дейтонами. В дальнейшем основным средством создания трансурановых элементов стал специальный циклотрон, производящий мощные пучки α-частиц и более тяжелых ядер. Первыми построили такой циклотрон американцы. Им удалось продлить Периодическую систему до 101-го элемента, который они назвали менделевием в честь великого русского химика, творца Периодической системы.

Затем в эту работу включились шведы, построившие специальный циклотрон в Нобелевском институте в Стокгольме.

Вскоре за создание трансурановых элементов взялась группа советских физиков во главе с членом-корреспондентом АН СССР Георгием Николаевичем Флеровым. В 1961 г. они ввели в строй в Дубне наиболее совершенный циклотрон для ускорения атомных ядер легких элементов.

К этому времени сначала шведы, а за ними и американцы сообщили о получении первых изотопов 102-го элемента, который решено было назвать нобелием. Правда, вскоре американцы показали, что шведские опыты недостоверны. Но в справедливости американских данных по изотопу 102-го элемента с массой 254 никто не сомневался.

В 1963 г. группа Г. Н. Флерова получила изотоп 102-го элемента с массой 256 и убедилась, что его свойства, предсказанные на основе американских данных об изотопе этого же элемента с массой 254, не соответствуют действительности. Тогда наши ученые совместно с работающими в Дубне чешскими радиохимиками решили проверить все сначала. За три года упорных исследований ими были созданы пять изотопов 102-го элемента. При этом оказалось, что никаких изотопов со свойствами, якобы обнаруженными в работах шведов и американцев, у 102-го элемента нет. Таким образом, этот элемент является первым трансурановым элементом, созданным советскими физиками.

Поделиться:
Популярные книги

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Огромный. Злой. Зеленый

Новикова Татьяна О.
1. Большой. Зеленый... ОРК
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Огромный. Злой. Зеленый

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

Купец IV ранга

Вяч Павел
4. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец IV ранга

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Я тебя не отпускал

Рам Янка
2. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.55
рейтинг книги
Я тебя не отпускал

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали