Чтение онлайн

на главную - закладки

Жанры

А ну-ка, догадайся!

Гарднер Мартин

Шрифт:

Встряхнув бутыль, перемешайте шарики. Если вы посмотрите на бутыль сбоку, то увидите не однородную смесь красных и зеленых бусин, как можно было бы ожидать, а красивую мозаику из довольно крупных скоплений красных бусин вперемежку с крупными скоплениями зеленых бусин. Скопления имеют неправильную форму. Образуемая скоплениями мозаика настолько неожиданна, что даже математики, когда впервые видят ее, считают, что одноцветные шарики слипаются вследствие какого-то электростатического эффекта. В действительности мозаику формирует случай. Узор из красных и зеленых пятен не более чем проявление случайного скапливания.

Если вам трудно в это поверить, попробуйте провести следующий простой эксперимент. На листе бумаги в клеточку начертите

квадратную рамку размером 20 клеток на 20. Затем раскрасьте каждую клетку в красный или зеленый цвет, выбирая цвета в зависимости от исхода бросания монеты. Раскрасив все 400 клеток, вы увидите такую же мозаику из красных и зеленых скоплений, какая видна через стенки бутыли.

При образовании скоплений в игру нередко вступают нематематические факторы. Если за автомашинами, случайным образом распределенными на шоссе, вы будете наблюдать с вертолета, то увидите, что они распределяются вдоль шоссе неравномерно, образуя скопления. Реально наблюдаемое скопление сильнее случайного, поскольку водитель стремится не пропускать вперед машины, движущиеся примерно с той же скоростью, и прибавлять скорость на свободных участках дороги. «Пятнистость» в расположении городов на карте, дождливых дней в календаре, куртин клевера и других дикорастущих растений на лугу и т. д. обнаруживает более сильную тенденцию к скоплению, чем та, которая объясняется только игрой случая.

Поразительный карточный фокус

Перед вами удивительный парадокс, связанный с теорией скопления. Разложите колоду карт так, чтобы карты черных и красных мастей чередовались.

Разделите колоду на равные части, убедившись при этом, что нижние карты в каждой половине различных цветов.

Перетасуйте колоду. Для этого, отогнув вверх углы каждой из частей колоды, отпускайте по одной карте поочередно из каждой части так, чтобы карты ложились внахлест, после чего подровняйте все карты, не тасуя.

Снимая по две карты сверху, вы обнаружите в каждой паре по одной красной и по одной черной карте, словно не вы своими собственными руками делили колоду на две части и не тасовали их внахлест!

Этот замечательный карточный фокус — пример того, как скрытая математическая структура, вступая в игру, порождает скопления, кажущиеся загадочными и непонятными. Фокусники называют положенный в его основу трюк принципом Гилбрейта в честь первооткрывателя — математика и большого любителя фокусов Нормана Гилбрейта, придумавшего его в 1958 г. С тех пор на основе принципа Гилбрейта фокусники-профессионалы изобрели не одну сотню хитроумнейших карточных фокусов.

Докажем по индукции, что принцип Гилбрейта действует безотказно. Итак, колода делится на две части. В одной части снизу оказывается черная карта, в другой — красная. После того как при тасовании внахлест на стол падает первая карта, в обеих частях колоды снизу

оказываются карты одного цвета. Если первой на стол упала красная карта, то обе нижние карты черные. Если первой на стол упала черная карта, то обе нижние карты красные. Следовательно, независимо от того, какая из нижних карт упадет второй, поверх первой карты на столе непременно ляжет карта другого цвета. Итак, в первую пару карт на столе войдет одна красная и одна черная карта.

После того как на стол сброшены две первые карты, мы возвращаемся к исходной ситуации: снизу в одной части окажется черная карта, в другой — красная. Какая бы из них ни упала на стол, снизу двух частей снова будут две карты одного цвета, поэтому и во вторую пару на столе непременно войдет одна красная и одна черная карта, после чего все опять повторится сначала.

Если вы захотите показать кому-нибудь этот фокус, то сначала вам необходимо подготовить колоду так, чтобы черные и красные карты чередовались.

Попросите кого-нибудь из зрителей сдать на стол по одной карте примерно половину колоды (после того, как зритель положит на стол верхнюю карту, нижние карты в обеих частях колоды заведомо будут различного цвета), а затем, взяв одну часть колоды в правую, а другую в левую руку, сбросить карты по одной на стол так, чтобы они легли внахлест.

Держа «перетасованную» колоду под столом так, чтобы ее не видели ни зрители, ни вы сами, объявите зрителям, будто вы можете на ощупь определять 164 цвет карт, и «в доказательство» начните выкладывать на стол карты парами — по одной красной и одной черной. Для этого вам необходимо лишь каждый раз брать по две карты сверху.

Можно ли обобщить принцип Гилбрейта и положить более широкий вариант в основу новых карточных фокусов? Попробуем проделать следующую процедуру. Подготовим колоду так, чтобы карты шли четверками — по одной карте каждой масти, например в последовательности ПЧБТ, ПЧБТ, ПЧБТ и т. д. (П — пики, Ч — червы, Б — бубны, Т — трефы).

Снимая по одной карте сверху, сдайте примерно половину колоды (точное число сданных карт не имеет значения). При сдаче последовательность мастей автоматически изменяется на обратную. Взяв в правую руку одну часть колоды (например, сданные карты), а в левую — другую часть колоды, сбросьте карты по одной из каждой части на стол так, чтобы они легли внахлест. После этого начните снимать карты с верха перетасованной колоды четверками.

В каждой четверке непременно будет по одной карте каждой масти.

А вот еще один не менее эффективный фокус.

Разложите карты четырьмя сериями по 13 карт в каждой. Карты в серии независимо от масти расположите в следующем порядке: туз, двойка, тройка, четверка, пятерка, шестерка, семерка, восьмерка, девятка, десятка, валет, дама, король. Проделайте с колодой ту же процедуру, что и в предыдущем фокусе. Отсчитайте сверху четыре серии по 13 карт.

В каждой серии непременно будет по одной карте всех значений от туза до короля!

В заключение приведем еще одно обобщение принципа Гилбрейта. Возьмите две колоды и расположите в них карты в одной и той же последовательности. Положите одну колоду на другую и сдайте сверху столько карт, чтобы осталось около 52 листов. Перетасуйте обе части удвоенной колоды внахлест и разделите 104 карты на две строго равные части. Каждая половина окажется полной колодой!

Парадокс с выборами

Предположим, что три кандидата— Абель, Берне и Кларк (А, В и С) — выставили свои кандидатуры на президентских выборах.

Поделиться:
Популярные книги

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Идеальный мир для Лекаря 28

Сапфир Олег
28. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 28

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Умеющая искать

Русакова Татьяна
1. Избранница эльты
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Умеющая искать

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Хроники странного королевства. Возвращение (Дилогия)

Панкеева Оксана Петровна
Хроники странного королевства
Фантастика:
фэнтези
9.30
рейтинг книги
Хроники странного королевства. Возвращение (Дилогия)

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия