Акустика на пальцах
Шрифт:
Наиболее жесткие части тела, хорошо передающие вибрацию, – это кости. Участие черепа в передаче звука мы уже обсудили. Но у нас бьется сердце, дышат легкие, упруго подвешены внутренние органы – почки, печень, селезенка…
Так что музыку мы слушаем не только ушами, а всем телом. И она должна нравиться не только голове, но и всем внутренним органам. Скорее даже наоборот – она нам нравится по совокупности отклика всего тела, а уже по звуку мы запоминаем, какая нам нравится. Вероятно, именно поэтому молодежи обычно нравится более громкая и энергичная музыка, а людям в возрасте не слишком громкая и более спокойная.
Некоторые любители тяжёлого рока, если они любят его только в записях, то есть не ходили
Это, конечно, не отменяет музыкальной грамотности: чем лучше человек разбирается в сложностях музыки, тем большую роль в его музыкальных вкусах играет голова. А грамотным стоит вспомнить, как глухой Бетховен слушал музыку зубами.
Страшный инфразвук
Один из механизмов, которым объясняют беспричинные страхи человека, является попадание его в зону заметного по мощности инфразвука. Если он по частоте совпадает с собственной частотой внутренних органов, то возникает резонанс. И тогда орган начинает колебаться слишком сильно и выделяет биохимический сигнал «караул». Известен эксперимент Роберта Вуда, когда он установил за кулисами сцены излучатель инфразвука, после чего довольно примитивная пьеса в соответствующих сценах при включенном излучателе привела к очень серьезным реакциям в зале.
Считается, что это частоты вокруг 7 Гц. У каждого они слегка отличаются. Если тема инфразвука заинтересовала, можно подробнее поискать в Интернете. Мне показалась любопытной публикация Анатолия 2 , в которой он ссылается на курсовую работу Дарьи Молчановой 3 .
Наверное, доводилось слышать про «Летучий голландец» – корабль-призрак 4 без матросов, предвещающий беду кораблю, на котором его увидели. Одна из версий, что в местах зарождения штормов, глубинных землетрясений, выходов газа генерируется инфразвук. Он прекрасно распространяется в воде и мощность его в природных явлениях может быть весьма велика. Из воды в воздух он плохо выходит, т.к. волновые сопротивления воды и воздуха слишком сильно отличаются. Но он может неплохо передаваться в вибрацию корпуса корабля, на котором находятся люди. Они начинают испытывать беспричинный страх и могут массово бросаться в море в стадном порыве, оставив пустой корабль.
2
Блог Анатолия http://www.decoder.ru/list/all/topic_105
3
Курсовая работа Молчановой https://www.bibliofond.ru/view.aspx?id=520390
4
Истории, легенды и изображения «Летучего голландца» https://www.vse-strani-mira.ru/supplemental-information/304-niderlandi/2688-korabl-prizrak.html
Пустой корабль сам вряд ли долго плавает в море. Значит, это произошло недавно. Значит, природный катаклизм, который где-то произошел, может вскоре более весомо о себе заявить, чем дошедший первым инфразвук. Если за секунду звук в воде уходит на 1,5 км, то через минуту он предупредит о шторме примерно за 100 км…
Акустика на природе
Ударим
Ударная волна – отличительная особенность упругих волн. Она возникает тогда, когда скорость движения частиц в фронте волны превышает скорость звука. Отличительная, потому что волна света распространяется на предельно возможной скорости, свет обогнать невозможно в рамках физики Эйнштейна. А звук можно.
Самый очевидный пример ударной волны в воздухе – гром от молнии. Молния – это электрический пробой воздуха. В месте пробоя образуется область плазмы (ионизированного воздуха) с зоной повышенного давления, которое разбегается во все стороны существенно быстрее скорости звука в виде ударной волны.
Кажется очевидной связь: удар источника порождает ударную волну. От слова «удар». Молния ударила – породила ударную волну, которую мы называем «гром». Менее очевидный пример – ударная волна от сверхзвукового движения. Многим известен хлопок от самолета. Некоторые заявляют «самолет прошел звуковой барьер». Звучит важно и эффектно, но неправда.
Пока звук распространяется от традиционного источника, это происходит во все стороны. При движении источника звука наблюдается эффект Доплера: изменение частоты звука в приемнике, если приемник ловит звук навстречу источнику или вдогон:
– приемник, на который движется источник, воспринимает частоту звука выше исходной;
– приемник, от которого движется источник, воспринимает частоту ниже.
Отслеживая изменение частоты звука, можно определить скорость движения.
Предложение читателю: понаблюдать за звуком, когда скоростной поезд или самолет пролетают мимо нас (как они слышны на приближении, и как при удалении?)
Если же скорость движения источника звука становится выше скорости звука, то в заднюю полусферу звук идет с нормальной скоростью звука для такой среды, а в переднюю полусферу звук не излучается – не успевает за движением источника. Источник просто гонит перед собой область повышенного давления, оставляя сзади область пониженного давления.
В воздухе, конечно, эту область повышенного давления не видно, но она похожа на волну, которую образует нос корабля на воде. Для корабля эта волна выглядит как треугольник в плоскости поверхности воды, а в воздухе это конус вокруг самолета. Пропорции этого конуса зависят от скорости самолета: фронт ударной волны расходится в боковые стороны от самолета со скоростью звука. Если скорость самолета равна скорости звука (1 Мах), угол основания конуса будет 45 градусов. Чем дальше вбок от источника уходит фронт волны, тем меньше перепад давления между передней зоной повышенного давления и задней зоной пониженного. Ударная волна быстро затухает. Аналогию мы видим по носовой волне корабля 5 .
5
Волна от носа корабля наглядна на кадре из статьи МК https://www.mk.ru/politics/2022/06/11/tass-port-ochakova-nikolaevskoy-oblasti-ostalsya-bez-ukrainskikh-voennykh-korabley.html
Когда фронт волны (участок этого расходящегося конуса) пролетит мимо нас, мы услышим хлопок: сначала нас ударит область повышенного давления и сразу же перепонка отскочит назад областью пониженного. Чем выше летит сверхзвуковой самолет, тем дальше он пролетит мимо нас, пока мы услышим хлопок, и тем тише он будет для нас. И только после хлопка мы будем слышать звук от его двигателей. Так что, никакой звуковой барьер он не проходил – он просто летел, пока до нас не дошла ударная волна повышенного давления, которую гонят перед собой его крылья.