Чтение онлайн

на главную - закладки

Жанры

Астероидно-кометная опасность: вчера, сегодня, завтра
Шрифт:

Увеличение альбедо за счет формирования облаков с каплями и с льдинками приводит к снижению температуры поверхности суши Земли, океана и нижних слоев атмосферы. Это уменьшает конвекцию в нижних слоях. С другой стороны, парниковый эффект увеличивает температуру. Поэтому даже знак эффекта до сих пор не ясен. Процессы инжекции воды в атмосферу и последствия этого требуют дальнейшего изучения.

Ударные волны, образующиеся при пролете астероида и/или в результате расширения послеударного плюма и распространяющиеся со скоростями > 2 км/с, нагревают атмосферу до нескольких тысяч градусов, что способствует образованию токсичных окислов азота (NO, NO2, HNO3) [Prinn and Fegley, 1987; Zahnle, 1990] и приводит к разрушению озонового слоя Земли [Turco, 1981].

Пожары, возникающие под действием излучения плюма или в результате возвращения в атмосферу высокоскоростных выбросов, заполняют нижнюю атмосферу дымом и токсичными газами. При ударах в осадочные породы (например, известняки и доломиты) в атмосферу выбрасывается огромное количество углекислого газа (результат дегазации кальцита) и серы. Если первый, являясь парниковым газом, может привести к существенному потеплению, то соединения серы, наоборот, приводят к уменьшению температуры поверхности. Суммарный эффект определяется массовым соотношением между этими химическими соединениями и их способностью оставаться в атмосфере длительное время (см. раздел 8.6.2).

Подъем пыли в пустынных районах. Существует еще один механизм выброса пыли в атмосферу — эрозия высокоскоростными ветрами, созданными ударной волной, усиленная вследствие так называемого «эффекта теплого слоя». Эта эрозия, по-видимому, наиболее интенсивна при «взрывах» комет и астероидов над полупустынными районами и песчаными пустынями, покрывающими значительную часть поверхности Земли. Теплый слой — это слой нагретого воздуха над поверхностью Земли, который может образовываться за счет нагрева поверхности излучением, возникшим при ударе. Низкий коэффициент теплопроводности песчаного грунта способствует быстрому повышению температуры частиц поверхностных слоев грунта. Естественно, что нагревается также воздух между песчаными частицами и над ними. Взаимодействие ударной волны с теплым слоем приводит к образованию предвестника перед фронтом волны и глобальной перестройке всего течения.

Эффект теплого слоя был обнаружен в середине 1950-х гг. при ядерных испытаниях и в специальных моделирующих опытах [Садовский, Адушкин, 1988]. В дальнейшем этот эффект изучался теоретически, оценками и численными расчетами, а также экспериментальными лабораторными исследованиями [Таганов, 1960; Немчинов и др., 1987, 1989; Артемьев и др., 1987, 1988, 1989; Бергельсон и др., 1987, 1989]. Он был исследован также в работах [Shreffler and Christian, 1954; Mirels, 1988; Reichenbach and Kuhl, 1988]. Взаимодействие ударной волны с теплым слоем приводит к возникновению вихревой структуры перед основной ударной волной. Это видно из рис. 8.10, где представлены результаты расчета развития взрывной волны для тела диаметром 200 м.

Рис. 8.10. (а) Распределение изохор в атмосфере после вертикального падения ледяного тела диаметром 200 м и скоростью 50 км/с в момент времени t = 1 с. (б) Положения начальных маркеров теплого слоя в тот же момент времени

На рис. 8.10 а показана форма ударной волны. Видно, как перед фронтом возникает предвестник. На рис. 8.10 б для того же момента времени приведены положения маркеров, предварительно размещенных в теплом слое в начальный момент времени. Вихревое течение внутри предвестника приводит к отрыву вещества теплого слоя от поверхности Земли. При этом нагретый газ захватывает частицы пыли, взвешенные в воздухе, и может поднять их на большую высоту.

Размеры предвестника и вихря намного больше толщины теплого слоя и оказываются порядка длины пути, пройденного ударной волной по теплому слою. Более того, в плоском случае при постоянной скорости поршня, генерирующего волну,

задача автомодельна, и размер предвестника со временем неограниченно растет и, в конце концов, его длина и высота намного превосходят толщину теплого слоя и последняя перестает играть роль. Таким образом, очень малое возмущение может вызвать глобальную перестройку течения.

Были проведены лабораторные эксперименты по взаимодействию ударной волны с теплым слоем над запыленной поверхностью. Сферическая волна создавалась лазерным импульсом, метеорный след моделировался электровзрывом тонкой проволочки. Нагрев покрытой тонкой графитовой пылью проволочки производился другим лазером. Одновременно проводились численные эксперименты с использованием программы SOVA, где размер частиц принимался равным 1 мкм, а энергия лазерного взрыва — 30 Дж. Результаты расчетов показали, что частицы поднимаются на высоту 0,2–0,4 см, заполняя область за косой волной (к моменту времени 5 мкс волна проходит по теплому слою~ 1,6 см). Эти эксперименты и расчеты использовались для моделирования возникновения пыльных бурь [Rybakov et al., 1997] после ударов небольших метеороидов на Марсе, где в силу разреженности атмосферы сравнительно небольшие метеороиды (порядка 1 м) достигают поверхности.

Для Земли удар по поверхности возможен для тел размером более ~ 50–400 м (критический размер разный для кометных, каменных и железных тел). Однако даже если тело не достигло поверхности, «взрыв» над пустынной поверхностью («Тунгуска» не в тайге, а в пустыне) может вызвать подъем пыли за счет импульсного ветра — движения высокоскоростной струи перед ударной волной вдоль поверхности с теплым слоем. Заметим, что подъем частиц пыли ветром происходит не только за счет трения, но и за счет сальтации, т. е. удара увлеченных воздухом частиц, выбивающих при своем падении новые частицы или упруго отскакивающих снова в поток.

В последние годы были предприняты довольно интенсивные поиски кратеров в пустынных районах Земли. Paillou et al. [2003], используя радарные изображения со спутников, в юго-восточной части Ливийской пустыни обнаружили двойную кратерную структуру, частично скрытую песчаными наносами. Полевые исследования показали, что каждый из этих кратеров имеет диаметр около 10 км и возраст менее 140 млн лет. В юго-западной части Египетской пустыни на площади более 4500 км2 было обнаружено 13 кратеров диаметром от 20 м до 1 км [Paillou et al., 2004]. Вряд ли столь большое кратерное поле было создано одним космическим телом. Скорее всего, оно было вызвано его фрагментацией еще до входа в атмосферу.

Из 180 найденных на Земле ударных кратеров в Африке находится 17. В пустынных районах Сахары, безусловно, еще будут найдены кратеры, скрытые под песчаными наносами. Ранее в Саудовской Аравии, в пустыне Руб-аль-Кали, была найдена группа из 4 кратеров (Вабар) диаметром от 17 до 100 м в области размером 400 x 200 м [Holm, 1962]. На месте падения было обнаружено метеоритное железо. Люминесцентный анализ показал очень небольшой возраст этого падения — всего 290 лет [Prescott et al., 2004]. Моделирование песчаных облаков, вызванных ударами в песчаные пустыни Земли или «взрывами» над ними и эрозией ветровыми потоками, тем более с учетом действия светового излучения и эффекта теплого слоя, пока не проводилось.

8.3. Выброс струй воды и цунами, вызванные ударами

Моря и океаны покрывают большую часть поверхности Земли, поэтому вероятность ударов астероидов и комет по водной поверхности выше, чем по суше.

Волны в воде в ближней зоне удара. Волны, вызванные падением метеороидов в океаны и моря, распространяются от места удара на большие расстояния и могут вызвать весьма серьезные последствия [Hills and Mader, 1995; Hills et al., 1994]. Удары по водной поверхности так же, как и по суше, вызывают образование кратера. Поскольку кратер в воде нестабилен, помимо волн, вызванных непосредственно ударом, после заполнения кратера водой и его схлопывания возникают волны, распространяющиеся наружу [Gault and Sonnet, 1982]. Астероиды с размерами, большими чем глубина океана, вызывают вблизи места удара волны с амплитудой, сравнимой с этой глубиной [Ahrens and O’Keefe, 1983, 1987; Roddy et al., 1987].

Поделиться:
Популярные книги

Истинная со скидкой для дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Истинная со скидкой для дракона

Герцог и я

Куин Джулия
1. Бриджертоны
Любовные романы:
исторические любовные романы
8.92
рейтинг книги
Герцог и я

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Росток

Ланцов Михаил Алексеевич
2. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
7.00
рейтинг книги
Росток

Демон

Парсиев Дмитрий
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Демон

Огромный. Злой. Зеленый

Новикова Татьяна О.
1. Большой. Зеленый... ОРК
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Огромный. Злой. Зеленый

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Тайны ордена

Каменистый Артем
6. Девятый
Фантастика:
боевая фантастика
попаданцы
7.48
рейтинг книги
Тайны ордена

Кодекс Охотника. Книга VI

Винокуров Юрий
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VI

Неудержимый. Книга XXI

Боярский Андрей
21. Неудержимый
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXI

Возлюби болезнь свою

Синельников Валерий Владимирович
Научно-образовательная:
психология
7.71
рейтинг книги
Возлюби болезнь свою

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Виконт, который любил меня

Куин Джулия
2. Бриджертоны
Любовные романы:
исторические любовные романы
9.13
рейтинг книги
Виконт, который любил меня

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7