Астрономы наблюдают
Шрифт:
Если проволочку болометра медленно перемещать вдоль солнечного спектра, можно измерить распределение энергии вдоль спектра и сравнить это распределение с тем, которое характерно для абсолютно черного тела соответствующей температуры. Такая комбинация спектроскопа и болометра называется спектроболометром.
Все рассмотренные измерители излучений (термоэлемент, радиометр и болометр), ныне замененные различной «инфракрасной» техникой, были одинаково чувствительны к излучению любой длины волны. Этого нельзя сказать о фотоэлементе, который подобно глазу и фотопластинке может служить примером селективного (т. е.
Фотоэлемент основан на явлении фотоэффекта — способности некоторых веществ испускать электроны под действием падающего на них света. К числу таких веществ, например, относятся щелочные металлы (натрий, калий, цезий и другие). Если слой со щелочным металлом соединить с отрицательным полюсом аккумулятора, а вблизи поместить металлическое кольцо, на которое дан положительный потенциал, в цепи потечет ток, сила которого зависит от величины падающего на фотоэлемент излучения.
Некоторые из фотоэлементов обладают примерно такой же чувствительностью, как обычная фотопластинка. Другие работают в широком интервале спектра — от ультрафиолетовых до инфракрасных лучей. Для измерения излучений в разных частях спектра употребляются фотоэлектрические спектрофотометры, основой которых служат фотоэлементы.
В настоящее время на смену фотоэлементам практически повсюду пришли более сложные приборы — фотоэлектронные умножители (ФЭУ). В этих приборах используется так называемая вторичная электронная эмиссия — явление, при котором достаточно энергичные электроны, ударяясь о поверхность проводника, могут выбить еще несколько электронов. Те в свою очередь «вышибают» новые электроны и тем самым первично слабый фототок в многокаскадном ФЭУ может быть значительно усилен. Чувствительность современных ФЭУ несравненно выше чувствительности прежних фотоэлементов.
Мы ограничимся этими примерами и обратимся теперь к особому, обширному и быстро прогрессирующему классу астрономической техники.
О будущем оптических телескопов
Естественное стремление увеличивать диаметр вновь создаваемых рефлекторов наталкивается на значительные технические трудности. Как уже говорилось, при очень большом поперечнике главного зеркала его вес становится существенной помехой для всей конструкции телескопа. Приходится прибегать к сложным средствам, препятствующим прогибу зеркала под действием собственного веса и обеспечивающим легкое, плавное его перемещение вокруг двух осей. Система рычагов и воздушных подушек при любом положении телескопа должна «нейтрализовать» вес его зеркала примерно на 99,9 %. В противном случае параболическая поверхность зеркала заметно деформируется и изображения светил сильно искажаются.
Немалые трудности связаны с выбором для зеркала такого материала, который бы обладал практик чески неуловимым термическим расширением, На смену стеклу пришли пирекс, плавленый кварц, а в последнее время ситал, коэффициент расширения которою в сотни раз меньше коэффициента расширения обычного стекла.
Предложены проекты многозеркальных рефлекторов. В одном из таких проектируемых телескопов шесть вогнутых зеркал диаметром 1,83 м каждое собирают от светила излучение, которое затем с помощью двух небольших диагональных зеркал направляется в пространство между главными зеркалами. Такой многозеркальный рефлектор по эффективности равноценен 4,5-метровому однозеркальному телескопу, но стоимость его изготовления несколько ниже. Существует проект рефлектора из 25 зеркал, равноценного 7,6-метровому однозеркальному телескопу, но, увы, у такого рода оптических систем есть существенный недостаток: неискаженное
Заметим, что стоимость телескопа пропорциональна квадрату его диаметра, а трудности его изготовления (с увеличением диаметра) возрастают в еще большей степени. Поэтому астрономы и оптики стремятся найти принципиально новые оптические схемы [9] ).
Еще в 20-х годах текущего века вместо параболического главного зеркала было предложено употреблять гиперболическое. Если и второе зеркало в рефлекторе такого типа сделать гиперболическим, то можно получить большое поле практически неискаженных изображений. Такие апланатические, как их называют, оптические системы бесспорно являются перспективными.
9
Подробнее см. П. В. Щеглов, «Перспективы наземной оптической астрономии», Сборник «Будущее науки», «Знание», 1974.
Еще интереснее проекты объединения нескольких телескопов в одну оптическую систему. Для этого изображение светила с помощью телевидения должно быть введено в память ЭВМ, где оно может накапливаться сколь угодно долго. Естественно, что ЭВМ может суммировать изображения от нескольких теле скопов, даже если они установлены на разных обсерваториях. Подобные устройства в некоторых проектах оказываются равноценными однозеркальному рефлектору с диаметром 100 метров! Если такие системы войдут в строй в ближайшее время, к концу века нам станут доступны объекты 30-й звездной величины, то есть, иначе говоря, радиус изучаемой нами части Вселенной увеличится в 10 раз!
Еще в прошлом веке астрономы начали строить обсерватории на вершинах гор, где воздух чище, спокойнее и изображения светил гораздо лучше, чем на уровне моря. Будущие оптические телескопы, несомненно, будут устанавливаться в районах с отличным астроклиматом, то есть с атмосферными условиями, максимально благоприятными для астрономических наблюдений.
Наземная оптическая астрономия далеко еще не сказала свое последнее слово. По-прежнему большие оптические телескопы выгоднее устанавливать на Земле, чем выводить на космические орбиты. Земные обсерватории будут успешно служить науке по крайней мере еще много десятилетий.
РАДИОТЕХНИКА И КОСМОС
«Современная радиоастрономия использует
самые чувствительные приемники и самые
большие антенные системы. Радиоастрономия
ценна прежде всего потому, что она существенно
обогатила наше представления о Вселенной».
Зарождение радиоастрономии
Декабрь 1931 года… В одной из американских лабораторий ее сотрудник Карл Янский изучает атмосферные помехи радиоприему. Нормальный ход радиопередачи на волне 14,7 м нарушен шумами, интенсивность которых не остается постоянной.
Постепенно выясняется загадочная периодичность — каждые 23 часа 56 минут помехи становятся особенно сильными. И так изо дня в день, из месяца в месяц.
Впрочем, загадка быстро находит свое решение. Странный период в точности равен продолжительности звездных суток в единицах солнечного времени. Яснее говоря, через каждые 23 часа 56 минут по обычным часам, отсчитывающим солнечное время, земной шар совершает полный оборот вокруг оси, и все звезды снова возвращаются в первоначальное положение относительно горизонта любого пункта Земли.