Чтение онлайн

на главную - закладки

Жанры

Атомная катастрофа на Урале
Шрифт:

В период секретности исследований в области атомной энергии обычные для научного языка термины даже в секретных отчетах было принято заменять кодовыми словами. Эта практика возникла из недоверия к секретарям-машинисткам, курьерам и тем, кто с чисто технической или финансовой стороны может быть вовлечен в те или иные исследования. Секретный жаргон Тимофеев-Ресовский сохранил и в разговорах об уральской катастрофе. Взрыв, загрязнивший обширные территории Челябинской области, он называл «плевком», а хранилище отходов «юшкой». Слово «юшка» на уральском русском диалекте (см. Словарь русского языка В. И. Даля) означает густой навар при приготовлении ухи. Поскольку уху обычно варят в металлических котелках, то под словом «юшка» Тимофеев-Ресовский подразумевал котел с густым, концентрированным и горячим раствором радиоизотопов.

В 1965 г. проблемы экологии и хранения радиоактивных отходов меня мало интересовали. Я был занят в основном вопросами о механизмах дифференцировки и старения у животных

и проявлением в этих процессах радиационных соматических мутаций.

Об исследованиях Тимофеева-Ресовского в области радиационной экологии на Урале до 1958 г. я хотел упомянуть здесь еще и потому, что именно он был действительным основателем в СССР этой отрасли науки. Из тюремного института одними своими анонимными секретными отчетами в 1948–1955 гг. он оказывал влияние на работы многих других групп. Некоторые данные из своих собственных отчетов уже после выхода из тюремных условий бывшие заключенные находили потом в публикациях других, свободных, участников атомных исследований. Научные сотрудники-заключенные делали научные выводы, а генерал-лейтенант А. И. Бурназян и другие получали за эти работы награды, титулы и премии. После 1956 г. Тимофеев-Ресовский уже мог публиковать материалы под собственным именем. За короткий срок и он, и его сотрудники опубликовали несколько десятков научных статей, сборников и книг в области радиационной биоэкологии и биогеоценологии. Для примера я хочу сослаться лишь на несколько основных трудов, в которых есть и полная библиография всей этой многочисленной серии исследований [ 4 , 5 , 6 , 7 , 8 ]. Работы Е. А. Тимофеевой-Ресовской и Н. В. Тимофеева-Ресовского [ 7 , 8 ] были представлены как диссертации для получения ими ученых степеней, хотя каждый из них имел к этому времени больше ста научных работ и международную известность. Тимофееву-Ресовскому было 62 года, его жене 63. Но поскольку они до ареста жили в Германии, их прежние научные заслуги не принимались во внимание при оценке научной квалификации в СССР, поэтому для формального утверждения в должностях руководителей научных коллективов им нужно было написать и защитить диссертации, соответствующие советским стандартам. Утверждение этих ученых степеней в Москве было проведено лишь в 1965 г., после отстранения Т. Д. Лысенко от руководящих постов.

Те достаточно ясные формулы, выводы и экспериментальные данные, которые были получены в строго контролируемых модельных условиях и для семнадцати разных радиоизотопов и их смесей в 1957–1963 гг., неожиданно стали темой еще одной статьи, автор которой почему-то не ссылался на выводы Тимофеева-Ресовского и его сотрудников, хотя их легко было найти в таких журналах, как «Доклады Академии наук СССР», «Ботанический журнал СССР», «Бюллетень Московского общества испытателей природы» и др. Я нашел ее случайно, просматривая советский журнал «Атомная энергия». Ее автор Ф. Я. Ровинский не входил в список знакомых мне имен, но упоминался в одной из работ, о которой я расскажу ниже. Название статьи Ф. Я. Ровинского [9] было чисто теоретическим, и задача исследования была теоретической. Автор представлял воображаемый круглый непроточный водоем с изогнутым дном и толстым слоем донных отложений, которые постепенно адсорбируют однократно внесенный (теоретически) в водоем радиоактивный изотоп. Поскольку в биологических компонентах водоема изотоп задерживается временно, а в донных илистых отложениях постоянно, то предлагалось пренебречь биомассой и рассматривать водоем как двухкомпонентную систему. В этой двухкомпонентности и был главный принцип, позволявший вывести математическую формулу той скорости, с которой концентрация изотопа в воде будет снижаться во времени. Получалась теоретическая расчетная кривая быстрого снижения содержания изотопа вначале и постепенного приближения к равновесию (плато) примерно через год.

После получения формулы и теоретической кривой нужно было проверить ее применимость к естественным условиям. Ровинский не проводил для этого экспериментальных исследований, а получил откуда-то готовые цифры изменения радиоактивности в двух непроточных озерах, однократно загрязненных смесью радиоактивных изотопов, как короткоживущих, так и долгоживущих, из которых автор упоминает только Sr90. Работа Ровинского поступила в редакцию в мае 1964 г. Учитывая сроки оформления таких работ для разрешения в печать, нужно полагать, что последние измерения активности в этих озерах были сделаны не позднее осени 1963 г., то есть до того, как озеро покрылось льдом на 5–6 месяцев, что обычно для всех озер на 90 % территории СССР. Между тем измерения активности проводились 65 месяцев, то есть были начаты где-то между 1957 и 1958 гг.

Автор нигде не приводит абсолютных цифр реальной концентрации радиоизотопов в воде, оперируя относительными цифрами и логарифмами от исходных величин первичного загрязнения. Теоретические кривые и предоставленные в распоряжение автора экспериментальные измерения радиоактивности воды в основном совпадали. Однако недоумение вызвала приводимая в статье характеристика

двух озер:

«Экспериментальными водоемами являлись озера автотрофного типа площадью 11,3 км2 (первый водоем) и 4,5 км2 (второй водоем). Дно озер плоское, блюдцеобразной формы. Они имеют мощные иловые отложения, полностью выравнивающие первоначальный рельеф дна. Берега часто зарастают тростником… хорошие условия для развития биомассы: высокие летние температуры, хорошая освещенность толщи воды и т. д. Гидрохимический состав озерных вод приводится в табл. 1» [ 9 . С. 380].

Судя по таблице, гидрохимический состав озер был весьма различен, что говорит о разной геологической природе донных пород. Содержание натрия в воде второго озера было в 9 раз выше, чем в первом, калия – в 5 раз, магния – в 2 раза, хлора – в 20 раз. В то же время в первом озере было значительно больше кальция. Так что вряд ли эти озера находились рядом.

Возникает естественный вопрос: зачем вообще нужны были два озера и почему столь больших размеров? Решение задачи легко было получить в искусственных условиях, по типу опытов Тимофеева-Ресовского. Можно было при желании естественных условий найти маленькие пруды (1–2 га или меньше). Но ведь два озера общей площадью больше 15 км2 и с хорошей биомассой являются громадной ценностью для промышленного рыболовства, возле них обязательно есть деревни или поселки. Зачем же загрязнять их смесью изотопов?

Озера такого большого размера обозначены на учебных картах СССР масштаба 1:4 000 000, где 1 см соответствует 40 км. Самая богатая озерами область СССР – Карельская, но это север, а там нет «высоких летних температур». Среди десятков областей континентальной части России больше всего озер всех типов (проточных и непроточных) в Челябинской области: на моей карте указанного выше масштаба их около пятидесяти, и немало среди них как раз такого размера. Л. Тумерман, со слов уральских жителей, назвал г. Кыштым ближайшим к месту катастрофы, дорога, по которой они проезжали, находится в 40–50 км к востоку от Кыштыма, и вся эта территория буквально усыпана озерами проточного и непроточного типа, и несколько озер как раз подходят по площади.

Но это только мои догадки. Хотя размеры «экспериментальных» озер являются географически значимыми и такие озера имеют названия и упоминаются в основных справочниках по озерам мира, ни названий, ни географического положения тех озер Ф. Я. Ровинский не приводит. Не приводит он, как было отмечено, и реальной концентрации радиоактивности в воде. Весьма маловероятно, что эти озера, содержащие около 1011 л воды, загрязнялись для каких-либо опытов, да и Ровинский сам получил данные по изменению радиоактивности в готовом виде через пять лет. Даже для получения «индикаторных» экспериментальных доз стронция в воде в два озера такого размера нужно было бы внести не меньше 5 000 кюри Sr90 – это активность промышленного, а не экспериментального порядка. Любое озеро, возле которого расположен реактор или завод по переработке продуктов реактора, может быть загрязнено до таких пределов однократно случайным аварийным сбросом. Но в «опыте» было два изолированных озера, лежащих на разных геологических породах. При этом они были загрязнены одновременно. Как могла возникнуть такая ситуация? Пока остаются только вопросы и недоумение. Единственное, о чем из этой работы можно сделать определенный вывод, это то, что загрязнение озер смесью радиоизотопов произошло либо в 1957-м, либо в 1958 г.

Как видно из графика (рис. 1), воспроизводимого здесь из статьи Ровинского, теоретическая и экспериментальная кривые не совпадали лишь в течение первых 12–13 месяцев, а потом были идентичными.

Рис. 1. Сопоставление фактического изменения (1) концентрации изотопов в воде и расчетной (0) кривой (2) изменения концентрации Sr90 в воде экспериментальных водоемов Sr90 в непроточных озерах [9] .

Теоретические кривые, рассчитанные Ровинским, были сделаны для возможной судьбы стронция-90 в будущем. В реальных озерах, как объясняет сам автор, в течение первых двух лет учитывалась общая радиоактивность смеси радиоизотопов (состав смеси не приводится). Вполне очевидно, что в первые 12 месяцев в озерах в составе радиоактивного загрязнения было не меньше 40 % короткоживущих радиоизотопов, которые исчезли к сроку совпадения теоретической и экспериментальной кривых. Смесь радиоактивных изотопов, в которой 60 % приходится на долгоживущие продукты распада урана (в основном стронций), характерна для реакторных отходов после определенного срока хранения или для смеси старых и свежих отходов (с преобладанием старых). Но как и чем реально были загрязнены в 1957-м или 1958 г. эти озера, автор не упоминает. И высказанное выше соображение может пока служить для нас лишь гипотезой.

Поделиться:
Популярные книги

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Зеркало силы

Кас Маркус
3. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Зеркало силы

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Ох уж этот Мин Джин Хо – 3

Кронос Александр
3. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо – 3

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат