Баллистическая теория Ритца и картина мироздания
Шрифт:
§ 3.2 Спектры атомов и атомные модели
Я остался сторонником механистических воззрений XIX столетия и думаю и знаю, что можно объяснить, например, спектральные линии (пока только водорода) без теории Бора, одной ньютоновской механикой.
Вальтер Ритц не раз указывал, что ключом к пониманию устройства атома должны стать атомные спектры. И, как было показано выше, Ритц действительно пришёл на основе найденных им спектральных закономерностей к классической модели строения атома. Речь идёт, конечно, не о планетарной модели атома Резерфорда, заведшей в тупик, а о куда менее известной — классической магнитной модели атома, предложенной В. Ритцем в 1908 г. [50] (§ 3.1). По идее Ритца, именно пространственная структура ядра является тем программным центром, который управляет жизнью атома и поведением в нём электронов, подобно тому, как жизнь биологической клетки задана строением клеточного ядра и информационной молекулой ДНК. В магнитной модели ядро управляет полётом электронов посредством магнитных, а не электрических сил. И это естественно: в природе и технике круговое движение электронов создаёт именно магнитная сила, и лишь она объясняет стабильность атома.
Будь движение электронов, как в планетарной модели, вызвано силой Кулона, они неслись бы по орбитам со скоростями
E= MV 2/2= hf,
с частотой его обращения f, где h— постоянная Планка. Сократив на MV/2, найдём
V=2 hf/MV= h/ Mr,
где r— радиус орбиты электрона. Если rпорядка радиуса атома (10 –10м), то V=2300 км/с. Эта скорость, обычная для электронов в лучевых трубках и лампах, на два порядка меньше c. Тогда, связанное с вращением ускорение a= V 2/ rменьше уже на четыре порядка, радиационное торможение — мало, и электрон на орбите атома живёт долго. Если ж учесть, что в магнитном поле вся энергия электрона чисто кинетическая E= MV 2/2= h 2/2 2 Mr 2, то при её спаде электрон уже не падает на ядро, а отдаляется от него, наращивая rорбиты в атоме неограниченно долго.
Ядро такого атома мы изображали, по концепции Ритца, в виде двух цепочек из чередующихся электронов и позитронов (так же и информационная основа клеточного ядра — двойная цепочка ДНК из чередующихся нуклеотидов). Однако, считается, что электроны и позитроны при контакте исчезают (аннигилируют) с выделением энергии, поскольку после не находят ни электронов, ни позитронов. Но это — лишь иллюзия. Ведь и при взрыве бомбы горючее соединяется с окислителем, резко выделяя энергию. И, хотя здесь тоже в итоге не остаётся ни горючего, ни окислителя, никто не скажет, что они исчезли, обратившись в энергию. Атомы окислителя лишь соединились с атомами горючего, образовав невидимый газ, расширившийся взрывом. Так же, и при контакте позитрона с электроном частицы не исчезают, а, слившись в пару, не имеющую заряда, перестают регистрироваться приборами (§ 1.16). Из таких парных сочетаний электронов и позитронов, судя по всему, и образованы протон, нейтрон и другие "элементарные" частицы, как предполагал ещё Ф. Ленард (§ 3.3), и как позднее обосновал В. Мантуров [79]. Кстати, по квантовой механике электрон и позитрон могли б образовать позитроний, аналогичный атому водорода. Но, на деле, позитроний, в отличие от атомов, нестабилен: кружащиеся частицы сливаются как раз за 10 –10с [82], растратив энергию, чем доказывают порочность планетарной модели, даже в квантовом её варианте. Ведь позитрон, играющий роль ядра, не имеет его структуры и соответствующей конфигурации магнитного поля.
Что же собой представляет ядро атома водорода, иначе говоря, — протон, и как создаётся его структура? Чуть выше, следуя идее Ритца, упрощённо представили ядро в форме крестовины из чередующихся электронов e – и позитронов e +, сравнивая его с кристаллом соли, так же сложенным из периодично размещённых заряженных частиц. Но, поскольку реальные кристаллы, за исключением снежинок, имеют вид многогранников, — параллелепипедов и пирамидок с плоскими гранями, то логичней и проще представлять ядро водорода в виде куба или параллелепипеда, скажем, в виде двойного квадратного слоя частиц (Рис. 101). Именно в виде таких кристаллов правильной формы, как увидим в дальнейшем, логичней всего представлять частицы, в том числе протон, образующий ядро водорода (§ 3.9). Поскольку, как было выяснено выше, масса — это величина аддитивная (§ 1.17), то масса ядра должна равняться сумме масс образующих его электронов и позитронов. Раз протон имеет вес 1836 электронов, то его можно условно изобразить, как параллелепипед с размерами 2х30х30 частиц, или, для точности, 2х27х34=1836. Отметим, что ещё Дж. Томсон, открывший электрон и построивший первую модель атома (см. его книгу "Электричество и материя"), предлагал атом водорода и его массу считать сложенными примерно из тысячи электронов и того же числа положительно заряженных частиц (позитронов) [139].
Рис. 101. Возможная структура протона или нейтрона в ядре и схема генерации спектра.
В каждом из слоёв магнитные моменты частиц ориентируются вдоль диагонали слоя, минимизируя энергию взаимодействия. В верхнем и нижнем слое моменты направлены противоположно (Рис. 102. а), образуя структуру магнитного поля, как у крестовины. В этом легко убедиться, представив систему набором магнитных диполей: в эквивалентной схеме (Рис. 101, Рис. 102) только края квадратов создают магнитные поля (они перпендикулярны плоскости слоя и смотрят вверх и вниз). Позитроны e +и электроны e – расположены в шахматном порядке, подобно ионам Na +и Cl – в кристалле соли. В атоме водорода электрон прилипает к этой "магнитной шахматной доске", располагаясь точно над позитронами, будучи притянут ими, а при малых колебаниях в магнитном поле ядра он излучает свет. При этом электрон, словно чёрные шашки в игре, дискретно прыгает, шагает по этой шахматной доске, замирая на клетках белого цвета, отвечающих позитронам, отчего дискретно меняется величина магнитного поля и частота колебаний электрона в нём. Поскольку структура магнитного поля получается той же, что и в крестовом атоме, то частота fколебаний
Рис. 102. Строение протонов в форме квадратов и треугольников и ориентация в них магнитных моментов.
Можно представить протон и в виде одинарного квадратного слоя частиц. Складываясь вдоль диагонали пополам, он образует двойной треугольный слой — со структурой поля крестовины и тем же спектром частот. Этот парный треугольник может быть и прямоугольным и равносторонним, тоже дающим водородный спектр (Рис. 102). Кроме водородного, модель позволяет рассчитать и другие атомы. Рассмотрим атом с атомным номером Z— содержащим Zпротонов. Квадраты протонов могут, как в сэндвиче, склеиться слоями, если над позитронами одного слоя окажутся электроны другого. Их взаимное притяжение и даёт те ядерные силы, что противостоят отталкиванию протонов и быстро (по экспоненте § 3.12) спадают с удалением [79]. Когда такая "стопка" протонов сложится вдоль диагонали пополам, получится слоёный уголок. В его верхней и нижней части магнитные моменты смотрят в разные стороны вдоль линии сгиба (Рис. 103).
Рис. 103. Склеивание протонов в слоёный уголок с увеличенным в Z2 раз полем B. Выше эквивалентная схема из магнитных диполей .
Здесь магнитный момент единицы длины aокажется уже не , а Z 2: он найдётся как сумма магнитных моментов отдельных магнитных диполей, образующих арифметическую прогрессию 1+ 3+ 5+…+(2 Z–1)=Z 2. Соответственно, магнитное поле и частота колебаний в нём электрона вырастет пропорционально Z 2: f= RZ 2 c(1/ n 2–1/ m 2). И точно, у ионизованных водородоподобных атомов He +, Li 2+, Be 3+, B 4+, C 5+, лишённых всех электронов кроме одного, спектры подчиняются этой формуле, дающей спектр водорода с увеличенным в Z 2раз масштабом. Присутствие остальных электронов привело бы к тому, что своим полем они бы исказили движение электрона, генерирующего спектр, и он приобрёл бы совсем иной характер, чем у водорода (§ 3.4). Впрочем, у многоэлектронных атомов с большим Zмагнитное поле столь велико, что вносимые электронами искажения оказываются незначительны. Поэтому, для спектра излучения электронов, крутящихся в столь сильных полях с огромной частотой и генерирующих рентгеновское излучение, справедлив закон Мозли f= R( Z — b) 2 c(1/ n 2–1/ m 2), отличающийся от найденного лишь малой поправкой b, вызванной влиянием остальных электронов [49, 134].
Возможно и другое, более простое объяснение изменению постоянной Ридберга Rс изменением атомного номера и заряда ядра Z. Возможно, пропорционально росту заряда ядра Zуменьшается равновесное расстояние a=a 0/ Zмежду электронами и позитронами и, соответственно, увеличивается R= h/16 2 ca 2 M=R H Z 2. Это было бы возможно, если б это равновесное расстояние задавалось, например, амплитудой колебаний электронов возле ядра, или если б оно задавалось магнитным моментом и зарядом ядра (в сумме с моментом и зарядом окружающих его электронов внутренних оболочек), так же, как расстояние между магнитными поплавками в опытах А. Майера определялось магнитным моментом центрального магнита (ядра атома § 3.1). Такое изменение равновесного расстояния между электронами в электронных оболочках позволило бы также объяснить уменьшение размеров атомов при росте атомного номера в периодах таблицы Менделеева.
В магнитном поле атома электроны могут совершать два типа "колебаний". Одни электроны кружатся с жёстко заданными частотами возле узлов атома, генерируя дискретный спектр излучения. Такие электроны будем называть "внутренними", или "узловыми". Другие же, словно в магнитной ловушке, кружатся с непрерывно меняющейся частотой fвокруг самого атома, обладая энергией E=hf. Эти электроны, которые назовём "внешними", или "орбитальными", создают сплошной (тепловой) спектр излучения и не занимают в атоме устойчивых положений, а кружатся в магнитном поле атомного остова (Рис. 107). Это внешнее магнитное поле уже не зависит от порядкового номера элемента и одинаково для всех атомов. Внешние электроны, пойманные в магнитную ловушку атома, порождают также фотоэффект и Комптон-эффект (§ 4.3, § 4.7). Такие электроны не задерживаются в атоме надолго, а регулярно, — от потерь энергии и схода с орбиты, покидают его и захватываются новыми атомами. В целом, атом — это своего рода комбинация разных приборов: магнитной ловушки, рупорной антенны, гиротрона, циклотрона, — преобразующих движение электронов в излучение и обратно. Так что, в атоме действуют обычные законы механики, вакуумной СВЧ-электроники и — совершенно нет квантовых, как отмечал ещё К.Э. Циолковский, тоже создавший чисто классическую модель атома, о которой, правда, ныне ничего не известно. Известно лишь, что с этой моделью, описанной в работе Циолковского "Гипотеза Бора и строение атома" был, вероятно, ознакомлен через А.Б. Шершевского А. Эйнштейн [69, с. 185]. Но это уже совершенно забытая история.