Чтение онлайн

на главную - закладки

Жанры

Бег за бесконечностью (с илл.)
Шрифт:

Такие вопросы встали перед физиками. В процессе более чем 20-летнего исследования различных калибровочных полей они и столкнулись с интересным явлением. Оказалось, что калибровочные поля, обладающие высокой симметрией, во многом отличаются от электромагнитного поля.

Например, на очень малых расстояниях соответствующие заряды могут обращаться в нуль, а на конечных расстояниях иметь вполне конечное значение. Это прямо противоположная ситуация по сравнению с электродинамикой! Получается, что заряд не ослабевает из-за экранировки виртуальными частицами, а, напротив, усиливается благодаря такой экранировке. А на малых расстояниях взаимодействие между частицами

вообще исчезает.

Столь необычайный результат связан с такими свойствами калибровочных полей с высокой симметрией, которые не могут возникать в простейшем их случае у электромагнитного поля. Оказалось, что кванты сложных калибровочных полей способны непосредственно взаимодействовать друг с другом, тогда как фотоны не могут участвовать в таком взаимодействии — обычный свет «не светится», то есть не порождает новые фотоны.

Калибровочные же кванты способны «светиться» — они охотно порождают новые калибровочные кванты, и именно из-за такого дополнительного взаимодействия возникает необычная антиэкранировка точечного заряда.

Ясно, что такие замечательные свойства калибровочных полей немедленно привлекли внимание теоретиков, пытавшихся объяснить природу межкварковых сил. Кванты калибровочных полей — их и назвали глюонами — должны были сыграть роль удивительного клея, который позволяет кваркам чувствовать себя совершенно свободно внутри адрона, но не отпускает их далеко друг от друга. Теория взаимодействия всех цветных кварков и глюонов получила название квантовая хромодинамика (по-русски — цветодинамика). Она созвучна квантовой электродинамике, пожалуй, только по названию, поскольку свойства глюонов намного сложней, чем свойства фотонов.

Так сформулировалась современная картина строения адронов.

Не стоит, конечно, полагать, что она ясна целиком и полностью. Природа глюонов и, следовательно, сил, действующих между кварками, еще во многом непонятна, и потребуется еще огромная работа теоретиков и экспериментаторов, чтобы детально выяснить все закономерности.

Хотелось бы верить, что в принципе принятая здесь схема строения адрона выглядит правильно. Но не исключено и другое, что между этой схемой и теорией адронов лежит область новой физики, подобно тому, как между моделью атома Резерфорда — Бора и современной теорией атома пролегла квантовая теория со всеми ее необычными представлениями…

Что же делать с эталонами, которые оказываются вовсе не эталонами? Как быть с аналогиями, которые подчас толкают нас по неверному пути?

Ответ может быть только один — надо работать, всегда искать новые возможности. Нравится нам это или нет, только новое не рождается из благих пожеланий и из простого созерцания. Оно создается нашими руками и по нашим проектам.

Важно представлять себе и то, что материалом для создания нового всегда является старое.

Можно тысячекратно объявлять эталоны реакционными пережитками, но это хорошо лишь постольку, поскольку служит стимулом для создания новых эталонов. А создать новый эталон — дело очень сложное.

На начальном этапе всегда приходится заимствовать готовую аналогию и приспосабливать ее к новой области явлений. Скажем, модель электромагнитных взаимодействий приспосабливалась к описанию сильных процессов. В ней делались изменения,

и она сама преобразовывалась. Оказалось, что в чем-то она применима, а в чем-то нет. И начинается мучительный процесс перестройки, привлечения других аналогий. Например, в физике адронов пришлось использовать несколько первоначально далеких друг от друга аналогий из других областей — вспомните хотя бы три картины строения адрона.

Одновременно физики учатся — да, да, именно учатся. Они создают новые математические методы анализа микромира, готовят новые экспериментальные средства.

И все эти факторы взаимодействуют между собой. Новые уравнения открывают новые возможности в объяснении наблюдаемых закономерностей. Новые эксперименты привлекают внимание к таким проблемам, на которые раньше не обращали внимания.

Постепенно совокупность старых аналогий, пересаженная на почву новых фактов, настолько преобразовывается, что наступает момент появления новой теории. В сущности, не момент, а какой-то промежуток времени, до которого наблюдалось как бы хаотичное движение противоречивых идей, а после него — упорядоченное представление еще об одной области знания…

Рискуя показаться отчаянным оптимистом, скажу, что в физике адронов мы уже вступили в такой промежуток. Но как близок твердый берег хорошей теории?

На этот вопрос ответить пока невозможно — все-таки мы плывем по незнакомому океану…

Как рождается адрон?

У человека, приступающего к изучению теории любых взаимодействий, всегда создается впечатление, что упругое рассеяние частиц — простейший из простых процессов. Ведь в упругом рассеянии никакие внутренние свойства частиц не изменяются, в результате реакции получаются такие же частицы, какие были до нее.

В самом деле, гораздо проще исследовать, скажем, соударение двух обычных бильярдных шаров, которые все время остаются теми же бильярдными шарами. Лишь в момент соприкосновения они слегка деформируются, чтобы немедленно восстановить свою форму. Вообразим теперь такое положение, когда в результате удара один или оба шара способны рассыпаться на несколько таких же бильярдных шаров, причем этот развал происходит довольно часто, в большом числе случаев.

Физик сказал бы по поводу таких столкновений, что процесс размножения шаров происходит с большой вероятностью, и стал бы немедленно ставить точные опыты, чтобы выяснить, с какой именно вероятностью рождается один дополнительный шар, два дополнительных шара и т. д.

Предположим теперь, что физик узнал все необходимое и натолкнулся на такую любопытную ситуацию. Шары могут охотно рождаться, но все-таки некоторый небольшой процент событий — это чисто упругое рассеяние. И вот вероятность простейшего процесса — упругого рассеяния — оказывается каким-то образом связанной с тем, как ведут себя неупругие реакции, то есть те, в которых рождаются новые шары.

Продолжая свои опыты и осмысливая их теоретически, физик наконец находит закон действия сил между шарами. Иными словами, он определяет форму потенциальной энергии взаимодействия и теперь уже может теоретически рассчитать поведение шаров в результате упругого соударения. И при этом первоначальные подозрения о какой-то связи между упругими и неупругими реакциями превращаются во вполне конкретный факт. Оказывается, что потенциальная энергия взаимодействия между двумя шарами почти полностью определяется процессами «множественного рождения» шаров.

Поделиться:
Популярные книги

Гарем на шагоходе. Том 3

Гремлинов Гриша
3. Волк и его волчицы
Фантастика:
юмористическая фантастика
попаданцы
4.00
рейтинг книги
Гарем на шагоходе. Том 3

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды

Черный Маг Императора 12

Герда Александр
12. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 12

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Отвергнутая невеста генерала драконов

Лунёва Мария
5. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отвергнутая невеста генерала драконов

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

На границе империй. Том 8

INDIGO
12. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8

Игра престолов

Мартин Джордж Р.Р.
Фантастика:
фэнтези
5.00
рейтинг книги
Игра престолов

Надуй щеки! Том 4

Вишневский Сергей Викторович
4. Чеболь за партой
Фантастика:
попаданцы
уся
дорама
5.00
рейтинг книги
Надуй щеки! Том 4

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Идеальный мир для Лекаря 28

Сапфир Олег
28. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 28

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII