Бег за бесконечностью
Шрифт:
Из этого вовсе не следует какое-либо преуменьшение роли поиска методом проб и ошибок. Между предсказанием большого выхода энергии в процессе деления ядра урана и созданием реального ядерного реактора — дистанция огромного размера. Но тут важна принципиальная сторона вопроса — без тщательного чисто научного анализа энергетики ядерных реакций, без теории «дефекта массы», основанной на эйнштейновской связи между энергией и массой, вряд ли мы были бы даже знакомы с такими словосочетаниями, как «ядерный реактор», «термоядерный реактор» и т. п.
Чисто рецептурная наука уходит в область преданий. Сегодня будущее наступает гораздо быстрей, чем в далекие времена. Аккумулировать опыт поколений в виде каких-то практических
Но, возможно, самое любопытное состоит в том, что взрыв исследовательской активности буквально на наших глазах сметает глубоко укоренившееся представление о самой науке как о непоколебимом своде фундаментальных законов природы, огромном храме — хранилище неоспоримой истины. Эти, в общем-то, славные образы — типичное наследие старых добрых «медленных» времен, когда по одним и тем же учебникам превосходили премудрость десятки и десятки студенческих поколений, а научные статьи не успевали безнадежно устаревать еще до выхода в свет; когда ученые были скорее жрецами-добровольцами, а не научными сотрудниками с годовыми, пятилетними и перспективными двадцатилетними планами работы.
Прорыв в мир частиц высоких энергий связан с формированием науки нового типа. Физика высоких энергий дала первый образец сверхбыстрого развития и в постановке основных задач, и в методах организации исследований. Этот блестящий взлет произошел в удивительно короткий срок благодаря счастливому сочетанию двух, быть может, важнейших человеческих качеств — неиссякаемой изобретательности и умения жертвовать сиюминутными интересами ради Будущего с большой буквы. Именно это и позволило перейти к созданию самых-самых (больших, сложных, дорогостоящих…) приборов для изучения микромира ускорителей заряженных частиц.
К концу 20-х — началу 30-х годов, когда помыслами физиков все сильней и сильней стали овладевать элементарные частицы и атомные ядра, выяснилось, что для серьезного движения вперед нужно срочно менять оружие. «Даровые» радиоактивные источники, которые верой и правдой служили науке много лет, не обеспечивали новых экспериментальных потребностей. Во-первых, они давали частицы с энергией, строго регламентированной законами радиоактивного распада. Во-вторых, эта энергия была не особенно велика — в лучшем случае порядка 10 МэВ. Кроме того, по ряду соображений для исследования ядер было выгодно использовать не альфа-частицы, а протоны.
Перед тем как перейти на долгосрочную и плодотворную работу в химии, биологии, геофизике и других областях науки, буквально «под занавес» радиоактивные источники сыграли одну из лучших своих ролей. С их помощью в 1932 году Дж. Чэдвик открыл долгожданную нейтральную составляющую атомных ядер — нейтрон, предсказанную его учителем Э. Резерфордом. Это открытие завершило длинную серию работ по установлению природы странного излучения, которое возникало в результате бомбардировки бериллия альфа-частицами и обладало высокой проникающей способностью. Дж. Чэдвик доказал, что при захвате альфа-частицы ядром бериллия образуется ядро углерода и испускается нейтральная частица, которая входила в состав одного из сталкивающихся ядер.
Экспериментальное обнаружение нейтрона позволило разработать простейшую составную модель ядра, о которой мы уже упоминали, вызвать искусственное деление тяжелых ядер и, наконец, в 1942
В высшей степени символично, что 1932 год оказался моментом передачи эстафеты — блестящий нейтронный финиш радиоактивных источников и практически сразу же мощный позитронный старт космических лучей. Старт был действительно превосходным, но многоопытные тренеры уже понимали, какие дистанции Доступны для космических бегунов, а какие нет.
Космические лучи представлялись идеальным инструментом исследований по двум соображениям: их получение не требовало ни малейших расходов, и они обладали фантастически широким спектром энергий. Зато работа с ними основывалась на не слишком приятном принципе «ждать у моря погоды» и требовала невероятного терпения. Космическая частица с нужной энергией могла попасть в регистрирующее устройство сегодня, завтра, через год. Предположим, что небеса все-таки «являли милость», но это было одно, два, от силы десяток-другой событий. Что с ними можно сделать? Можно увидеть следы «неведомых зверей» — открыть новые частицы, можно зафиксировать новый тип процессов; в общем, установить уникальные факты существования чего-либо. Но получить более детальную информацию о поведении той же самой вновь открытой частицы в различных реакциях и при различных энергиях оказывается чрезвычайно сложным и слишком длительным делом. Ведь необходимо набирать сотни тысяч событий. В этом плане космические лучи могли оказать лишь одну услугу — дать предварительный сигнал о каких-то новых закономерностях.
Именно такова их основная специальность в настоящее время; и надо отметить, что зарекомендовали они себя в этом деле с лучшей стороны. Если учесть, что сейчас в составе космических лучей зарегистрированы частицы с энергиями до 1021 электрон-вольт, а на ускорителях изучают реакции при энергиях частиц лишь до 1012 эВ, то становится ясно — им еще долго предстоит выполнять функции «стратегической разведки».
Все это неплохо — одним поставят памятник, другие уйдут в разведку. А кто же станет работать? Природа не позаботилась о достойной замене и не предложила ни одного естественного источника радиации, который помог бы обойти все наметившиеся трудности. Но физики уже представляли себе путь, по которому следовало двигаться, — частицы должны ускоряться электрическим полем; в принципе так же, как и при получении катодных лучей (электронов с большими скоростями). Только электроны ускорялись разностью потенциалов всего в несколько тысяч электрон-вольт, а теперь нужны миллионы. Следовательно, необходимо решать электротехнические проблемы с созданием высоковольтных установок…
Между этими ранними идеями и действующими установками лежат годы трудных поисков, великолепные находки и тягостные сомнения, радужные и пессимистические прогнозы.
1918 год. Петроград. Город борется за новую жизнь. Трудно с хлебом, трудно с работой, по ночам на вымерзших, пустынных улицах нет-нет и вспыхивают короткие ожесточенные перестрелки… Но и здесь, в центре великого социального потрясения, с невероятным напряжением сил идет битва за будущее русской науки, закладывается основа уверенного взлета. И одним из первых пунктов программы научного развития стала организация радиевого отделения при Радиологическом и рентгенологическом институте.
Иоанн Антонович
10. Романовы. Династия в романах
Проза:
историческая проза
рейтинг книги
Барон меняет правила
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Гоплит Системы
5. Пехотинец Системы
Фантастика:
фэнтези
рпг
фантастика: прочее
рейтинг книги
Кодекс Охотника. Книга VIII
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Назад в СССР 5
5. Курсант
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Сирота
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
рейтинг книги
Ринсвинд и Плоский мир
Плоский мир
Фантастика:
фэнтези
рейтинг книги
70 Рублей
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
рейтинг книги
Тайны затерянных звезд. Том 1
1. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
фэнтези
рейтинг книги
Совершенный: Призрак
2. Совершенный
Фантастика:
боевая фантастика
рпг
рейтинг книги
Отражение первое: Андерсы? Эвансы? Поттеры?
Фантастика:
фэнтези
рейтинг книги
