Беседы о физике и технике
Шрифт:
КАКАЯ ОТРАСЛЬ ЭЛЕКТРОЭНЕРГЕТИКИ СЕЙЧАС ЯВЛЯЕТСЯ ОСНОВНОЙ?
Основная доля электроэнергии вырабатывается на тепловых электростанциях (ТЭС). В последние годы количество выработки электроэнергии на ТЭС уменьшается (84 % в 1970 г. и 80 % в 1980 г.). Однако их роль в энергетике будет еще долгое время оставаться определяющей. Основным химическим топливом на ТЭС являются уголь, нефть, газ, торф, сланец и др.
Большинство крупных тепловых электрических станций в настоящее время работает на угле. Особенно богаты угольные запасы в Сибири. Так, балансовые запасы угля в Канско-Ачинском бассейне составляют 115 млрд. т. На
КАКОВ ВКЛАД ГИДРОЭЛЕКТРОСТАНЦИЙ?
Вторым по значению источником электрической энергии в общем балансе страны являются гидравлические электрические станции (ГЭС).
Электрическая энергия ГЭС самая дешевая, а мобильность ГЭС, т. е. способность в считанные минуты входить в режим, во много раз выше, чем у тепловых и атомных станций. Это особенно важно при автоматизированном уровне управления энергосистемами. Немаловажную роль имеет, несмотря на существенные первичные затраты и длительность строительства, самоокупаемость.
Так, Братская ГЭС дала первый ток в 1961 г. Полная мощность после пуска всех агрегатов составила 4,425•103 МВт. В 1977 г. станция уже в 67 раз окупила затраты на свое сооружение. Одновременно произошло сокращение обслуживающего персонала почти на 50 %.
Образование водохранилищ при бережном учете всех факторов должно способствовать улучшению обработки земель, принести воду в засушливые районы. К сожалению, развитие гидроэнергетики далеко не всегда сопровождалось у нас бережным отношением к природе. Печальные результаты этого хорошо известны: затопление большого количества плодородных земель при строительстве равнинных гидроэлектростанций, нарушение водного баланса целых регионов, например Арала и др.
Важное достоинство ГЭС заключается в неиссякаемости энергоресурсов рек и весьма низкой себестоимости вырабатываемой ими электроэнергии. Уже построены Красноярская (6•103 МВт), Братская (4,5•103 МВт), Иркутская (0,65•103 МВт), Богучанская (4•103 МВт), Усть-Илимская (4,3•103 МВт), Саяно-Шушенская (6,4•103 МВт) и др. Вводится ряд крупных ГЭС в Средней Азии и на Дальнем Востоке. Для обеспечения электроэнергией промышленных районов в пиковые часы вводятся гидроаккумулирующие станции — Чебоксарская (2,2•103 МВт), Загорская (1,2•103 МВт), Днепровская (0,21•103 МВт).
И все же энергия рек, видимо, не сможет стать основой энергетики будущего. Специалисты считают, что уже через сто лет практически все гидроресурсы в развитых странах будут задействованы. Даже при этом гидроэлектростанции дадут не более 1/5 всей потребной энергии.
ВЫ СКАЗАЛИ О НЕИСЧЕРПАЕМОСТИ ЭНЕРГИИ РЕК. ЭТОГО НЕ СКАЖЕШЬ О ТОПЛИВЕ ДЛЯ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ.
К сожалению, и запасы нефти, газа, угля — наиболее популярных в современной энергетике топлив — отнюдь не бесконечны.
Миллионы лет понадобились природе, чтобы создать эти запасы, расходуются же они несравненно быстрее. По оценкам экспертов, всех разведанных на Земле запасов угля, нефти и газа хватит примерно на 175 лет. Конечно, могут быть разведаны
ЗНАЧИТ, НУЖНЫ НОВЫЕ ИСТОЧНИКИ ЭЛЕКТРОЭНЕРГИИ?
В поисках новых источников ученые давно исследуют ресурсы, таящиеся в водах Мирового океана. Одно из направлений — использование энергии приливов. Советские исследователи считают, что современное состояние техники в СССР позволяет построить приливные электростанции с общей годовой выработкой 108 МВт электроэнергии.
В 1968 г. дала первый ток советская приливная электростанция (ПЭС) мощностью 0,4 МВт в заливе Кислая Губа вблизи Мурманска. Она стала прообразом приливных электростанций, проектируемых в нашей стране.
В СССР используют и другие источники для получения электрической энергии. К ним относятся тепло подземных вод, энергия Солнца, ветра и др. Уже сейчас по стоимости киловатта мощности установки, использующие энергию ветра, могут конкурировать с энергией, вырабатываемой на тепловых электростанциях. Однако названные источники энергии вряд ли в ближайшем будущем смогут удовлетворить все возрастающие потребности в электроэнергии.
ВЫ НИЧЕГО НЕ СКАЗАЛИ ОБ АТОМНОЙ ЭНЕРГЕТИКЕ. ЧТО, ПОСЛЕ ЧЕРНОБЫЛЯ В НЕЙ ПОЯВИЛИСЬ СОМНЕНИЯ?
Катастрофа на Чернобыльской АЭС показала, как далеко зашло человечество во взаимоотношениях с тем миром, в котором оно существует, насколько высокой бывает цена халатности и ошибки. Какой вывод из этого надо сделать? — Остановиться в движении вперед? Или двигаться так, чтобы исключить подобные ошибки?
Использование энергии расщепления атомного ядра — естественный шаг на пути расширения энергетической базы, попытка уменьшить непроизводительную трату невозобновляемых земных ресурсов: нефти и газа.
В некоторых случаях атомная электростанция — единственная возможность создания промышленной энергетической базы (например, в условиях Заполярья). Уже сейчас атомная энергетика, хотя и является молодой отраслью науки и техники, составляет заметную долю в энергетическом комплексе страны. Первая в мире атомная электростанция (АЭС) мощностью около 5 МВт была пущена в СССР в 1954 г. Мощность станции небольшая, но с ее пуском была доказана возможность мирного использования энергии атома.
В СССР разработана долговременная программа строительства АЭС. В конце 1985 г. в СССР построено или находится в стадии строительства свыше 30 АЭС общей мощностью 26 803 МВт, среди которых Ленинградская имени В. И. Ленина, Нововоронежская имени 50-летия СССР, Курская, Смоленская и др.
Ведутся разработка и освоение производства энергоблоков мощностью 800 тыс. кВт с реакторами на быстрых нейтронах. Решаются научно-технические проблемы, связанные с созданием энергоблоков мощностью 1500 тыс. кВт с реакторами на тепловых нейтронах и мощностью 1600 тыс. кВт с реакторами на быстрых нейтронах.
Нет сомнений в том, что атомная энергетика заняла прочное место в энергетическом балансе. Но надолго ли хватит урана? Не встанет ли перед человечеством та же проблема, что и сейчас, — проблема ограниченности запасов природных источников энергии? По подсчетам ученых, атомного топлива хватит очень надолго. На несколько сотен лет хватит урана, находящегося в земной коре. А дальше? Около 4 млрд. т урана растворено в воде Мирового океана. Правда, извлечение его из морской воды пока еще недостаточно освоено. Однако нет никаких сомнений, что эта техническая задача будет решена.