Бесконечная сила. Как математический анализ раскрывает тайны вселенной
Шрифт:
Если метафора со стеной кажется вам слишком мрачной и негуманной (кому захочется вечно приближаться к недосягаемой стене?), рассмотрите такую аналогию: все, что движется к какому-то пределу, подобно герою, занятому бесконечным поиском. Это не бесполезное занятие, как бессмысленная задача Сизифа, обреченного вечно вкатывать камень на гору только для того, чтобы увидеть, как он снова скатывается вниз. Когда в математике происходит приближение к пределу (как наши фигуры с выступами
Притча о 0,333…
Чтобы подкрепить важные идеи, что в бесконечности все упрощается и что пределы подобны недостижимым целям, возьмем пример из арифметики. Это задача преобразования обыкновенной дроби – например, 1/3 – в десятичную (в нашем случае 1/3 = 0,333…). Я хорошо помню, как моя школьная учительница математики мисс Стэнтон учила нас это делать. Запомнилось это потому, что она внезапно заговорила о бесконечности.
До этого момента я никогда не слышал, чтобы взрослые говорили о бесконечности. Мои родители определенно этого не делали. Это казалось секретом, о котором знали только дети. На детской площадке о нем постоянно упоминали в насмешках и издевках:
– Ну ты и дурак!
– А ты дурак вдвойне!
– А ты дурак бесконечность раз!
– А ты дурак бесконечность раз плюс один!
– Это то же самое, что бесконечность, идиот!
Такие поучительные разговоры убедили меня в том, что бесконечность ведет себя не так, как обычное число. Она не становится больше, если к ней прибавить 1. Даже добавление бесконечности не поможет. Несокрушимые свойства делали ее окончательным аргументом в дворовых разборках. Побеждает тот, кто применит бесконечность первым.
Однако никто из учителей до мисс Стэнтон не упоминал о бесконечности. Все в нашем классе уже знали о конечных десятичных дробях, используемых для представления денежных сумм, например 10,28 доллара, где есть две цифры после запятой. Напротив, бесконечные десятичные дроби, где после запятой было бесконечно много чисел, казались странными на первый взгляд, но становились естественными, как только мы начали изучать обыкновенные дроби.
Мы узнали, что дробь 1/3 можно записать как 0,333…, где многоточие означало, что тройки повторяются до бесконечности. Это имело для меня смысл, потому что, пытаясь поделить 1 на 3 в столбик, я застрял в бесконечном цикле: 1 меньше 3, поэтому получаем в частном ноль целых, дописываем к единице 0, делим 10 на 3, получаем 3 и остаток 1; в итоге нужно снова делить 1 на 3, то есть мы возвращаемся к тому, с чего начали. Выхода из цикла не было, а значит, тройки при делении будут повторяться: 0,333…
Многоточие после 0,333 истолковывается двумя способами. Наивное толкование состоит в том, что существует буквально бесконечное количество троек, находящихся справа от десятичной запятой вплотную друг к другу. Конечно, мы не можем записать их все, раз их бесконечно много, но с помощью многоточия показываем, что они там есть, по крайней мере в нашей голове. Я назову такую интерпретацию актуальной бесконечностью Преимущество ее в том, что она выглядит простой и здравой, пока мы не желаем особо задумываться о том, что означает бесконечность.
Более изящное толкование состоит в том, что 0,333… представляет собой некоторый предел – в точности такой же, как предельный прямоугольник для наших фигур в доказательстве с пиццей или стена для незадачливого путешественника. Только здесь 0,333… отображает предел последовательных десятичных чисел, которые мы генерируем
Для работы с равенством вида 1/3 = 0,333… не имеет значения, какой точки зрения мы придерживаемся. Они одинаково состоятельны и дают одни и те же математические результаты в любых нужных нам вычислениях. Однако в математике существуют ситуации, когда понятие актуальной бесконечности может вызвать логический хаос. Именно это я подразумевал, когда писал во введении о големе бесконечности. Иногда действительно важно, как мы думаем о результатах процесса, приближающегося к какому-то пределу. Делая вид, что процесс в реальности заканчивается и каким-то образом достигает нирваны бесконечности, подчас можно попасть в неприятную ситуацию.
Притча о многоугольнике с бесконечным числом углов
В качестве примера возьмем круг, расставим на его границе (окружности) через равные промежутки определенное количество точек и соединим их отрезками. При трех точках получим равносторонний треугольник, при четырех – квадрат, при пяти – правильный пятиугольник и так далее, последовательно получая все новые правильные многоугольники.
Обратите внимание, что чем больше точек мы используем, тем ближе наш многоугольник к кругу. При этом стороны многоугольников становятся все короче и многочисленнее. Наш круг – предел для построенных многоугольников.
Таким образом, бесконечность снова соединяет два мира. На этот раз она ведет нас от прямолинейности к криволинейности, от угловатых фигур к гладкому кругу, тогда как в случае с пиццей бесконечность, наоборот, преобразовала круг в прямоугольник.
Конечно же, на любом шаге многоугольник по-прежнему остается многоугольником. Это еще не круг и никогда им не станет. Фигуры приближаются к кругу, но никогда не совпадут с ним. Здесь мы имеем дело с потенциальной бесконечностью, а не с актуальной. Так что с логической точки зрения все безукоризненно.
Но что, если бы мы могли пройти весь путь до актуальной бесконечности? Был бы итоговый многоугольник с бесконечным количеством углов и бесконечно короткими сторонами кругом? Заманчиво так думать, ведь тогда многоугольник окажется гладким. Все углы будут сошлифованы. Все станет идеальным и красивым.
Здесь заложен общий принцип: пределы часто проще, чем приближения, ведущие к ним. Круг проще и изящнее, чем любой из угловатых многоугольников, к нему приближающих. То же самое относится и к доказательству с помощью пиццы, где предельный прямоугольник проще и элегантнее, нежели бугристые фигуры с некрасивыми выступами, и к дроби 1/3. Это проще и приятнее, нежели любое из неуклюжих приближений с большими числителями и знаменателями вроде 3/10, 33/100 или 333/1000. Во всех этих случаях предельная фигура или число проще и симметричнее, чем конечные приближения.
Кодекс Крови. Книга ХVI
16. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Барону наплевать на правила
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Отличница для ректора. Запретная магия
Любовные романы:
любовно-фантастические романы
рейтинг книги
Лубянка. Сталин и НКВД – НКГБ – ГУКР «Смерш» 1939-март 1946
Россия. XX век. Документы
Документальная литература:
прочая документальная литература
военная документалистика
рейтинг книги
Дракон с подарком
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
рейтинг книги
Двойня для босса. Стерильные чувства
Любовные романы:
современные любовные романы
рейтинг книги
Кодекс Охотника. Книга VIII
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
На границе империй. Том 3
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
рейтинг книги
Идеальный мир для Лекаря 13
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
рейтинг книги
Вперед в прошлое 2
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Темный Лекарь 7
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Наследник
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
рейтинг книги
