Без ретуши. Портреты физиков на фоне эпохи
Шрифт:
Вычисляя первые порядки теории возмущений, мы с Галаниным увидели, что в поляризационных операторах и вершинных функциях при больших виртуальностях р2 возникают ln(р2/m2), причём в 1-м порядке появляется ln(р2/m2), во 2-м есть члены, пропорциональные ln2(р2/m2), в третьем — ln3(р2/m2) и т.д. Очень поучительной оказалась для нас статья Эдвардса (S.F.Edwards. Phys. Rev. 90, 284 (1953)). Эдвардс построил уравнение для вершинной
В 50-е годы Ландау приезжал в ТТЛ (ИТЭФ) каждую среду. Он участвовал — и очень активно — в проходивших по средам экспериментальных семинарах, которыми руководил Алиханов. После семинара Ландау приходил в комнату теоретиков, где тогда сидели Галанин, Рудик и я. Сюда же собирались все остальные теоретики, и начинались обсуждения, продолжавшиеся часа два.
На одном таком обсуждении Померанчук, Галанин и я объяснили Ландау ситуацию с радиационными поправками в квантовой электродинамике. Из этих разговоров у Ландау возникла идея суммирования старших логарифмических членов, т. е. членов (e2ln p2)n в КЭД. Именно за это Померанчуку, Галанину и мне была выражена благодарность в первой работе Ландау, Абрикосова и Халатникова. (Ландау был скуп на благодарности и выражал их только тем, кто действительно внёс что-то существенное в его работу.)
Первоначально, когда Ландау формулировал идею, у него было представление, что в результате суммирования старших логарифмов в КЭД возникает то, что сейчас называется асимптотической свободой — взаимодействие станет убывать с ростом p2. Такие ожидания сформулированы в первой из серии работ Ландау, Абрикосова и Халатникова, которая была отправлена в печать ещё до того, как был получен окончательный результат. Приезжая в ТТЛ по средам, Ландау рассказывал, как идут вычисления. Основные идеи (поворот контура интегрирования, введение обрезания, выбор калибровки и т.д.) принадлежали Ландау, но технически все вычисления делали Абрикосов и Халатников — сам Ландау фейнмановской техникой владел плохо. Полученный ими результат подтвердил ожидания — эффективный заряд в КЭД убывал с ростом энергии.
Галанин и я решили повторить эти вычисления. Нам хотелось провести ту же идею в нашей системе перенормированных уравнений. (В дальнейшем вместе с Померанчуком мы это сделали.) Однако, уже вычисление первой петли привело к противоположному результату: эффективный заряд не убывал, а рос с ростом энергии! В ближайшую среду мы рассказали это Ландау и убедили его в своей правоте. В последней из серии работ Ландау, Абрикосова и Халатникова, которую авторы уже собирались отправить в печать, была ошибка в знаке, кардинально меняющая все выводы — вместо асимптотической свободы появился нуль заряда. Как впоследствии рассказывал С. С. Герштейн (который тогда работал в Институте Физических Проблем), вернувшись после этого семинара из ТТЛ, Ландау сказал: «Галанин и Иоффе спасли меня от позора».
Спустя год или два после опубликования работ Ландау, Абрикосова и Халатникова, когда уже была опубликована статья Ландау и Померанчука с более общим обоснованием нуля заряда, Ландау получил письмо от Паули. В нём говорилось, что аспирант Паули Вальтер Тирринг нашёл пример теории, в которой нет нуля заряда — скалярной теории взаимодействия мезонов с нуклонами. К письму была приложена рукопись статьи Тирринга. Дау дал эту статью Чуку, а Чук мне, с просьбой разобраться. Я изучил статью и пришёл к выводу, что она неправильна. Ошибка состояла в том, что использовалось тождество Уорда, возникающее при дифференцировании по массе нуклона, а оно нарушалось при перенормировке. Я сказал об этом Чуку. «Вы нашли ошибку, Вы должны написать об этом Паули», — сказал Чук. Мне было страшно: писать самому Паули, что его аспирант сделал ошибочную работу, а он, Паули, этого не заметил! Но Чук настаивал, и в конце концов, я написал письмо Паули. Ответ я получил не от Паули, а от Тирринга. Он полностью признал свою ошибку. Статья так и не появилась в печати.
Работы по несохранению С, Р, Т. В 1955-1956 годах всех волновала загадка – . Экспериментально наблюдались распады K– мезонов на 2 и 3 -мезона. При сохранении чётности, которая тогда считалась незыблемой, один и тот же мезон не мог одновременно распадаться на 2 и 3 -мезона. Поэтому большинство физиков думало, что это два разных мезона — и . По мере уточнения экспериментов, однако, становилось ясно, что их массы совпадают. Весной 1956 года Ли и Янг выступили со своей революционной статьёй, в которой выдвинули гипотезу о несохранении чётности в слабых взаимодействиях, объяснили загадку – и вычислили эффекты несохранения чётности в -распаде и цепочке распадов ->– > е. Ландау категорически отвергал возможность несохранения чётности, говоря: «Пространство не может быть асимметрично!» Померанчуку больше нравилась гипотеза вырожденных по чётности дублетов странных частиц.
А. П. Рудик и я решили вычислить ещё какой-нибудь эффект на основе предположения о несохранении чётности,
Я снова прочитал статью Паули, теперь уже внимательно, и сразу стало ясно, что при нарушении P обязательно должны нарушаться либо C, либо Т, либо и то, и другое. И тут возникла следующая мысль: два сильно отличающихся по времени жизни К0– мезона, могут возникать только в том случае, если, по крайней мере, приближённо одна из инвариантностей — С или Т — имеет место. Мы с Рудиком рассмотрели ряд эффектов и увидели, что P– нечётные парные корреляции спина и импульса (члены ~ р) возникают при нарушении С и сохранении Т, в противоположном случае их нет. (В последующей работе я доказал эту теорему в общем виде, а также нашёл вид P– нечётных членов, соответствующих нарушению Т.) Мы написали статью, и я рассказал её Л. Б. Окуню. Окунь сделал очень полезное замечание, что аналогичные эффекты — различные в схемах с C– и Т– инвариантностью — возникают также в распадах К0– мезонов на -мезоны. Мы включили это замечание в статью, и я предложил Окуню стать соавтором. Он вначале отказывался, говоря, что за такое замечание он заслуживает лишь благодарности, но в конце концов, я его уговорил. После этого работу рассказали Померанчуку. Померанчук постановил: немедленно, в ближайшую среду, работу нужно рассказать Дау. В среду Дау сначала отказывался слушать: «Я не хочу слушать о несохранении чётности. Это ерунда!» Чук его уговаривал: «Дау, потерпи 15 минут, послушай, что скажут молодые люди». Скрепя сердце, Дау согласился. Я говорил недолго, вероятно, полчаса. Дау молчал, потом уехал. На следующий день утром мне позвонил Померанчук: «Дау решил проблему несохранения чётности. Немедленно едем к нему». К этому моменту обе работы Ландау — о сохранении комбинированной чётности и о двухкомпонентном нейтрино — со всеми выкладками уже были сделаны.
Наша статья и статьи Ландау были отправлены в печать до опытов By и др., в которых была обнаружена асимметрия электронов при распаде поляризованного ядра — найдена корреляция спина ядра и импульса электрона, т.е. открыто несохранение чётности. Из наших результатов тогда следовало, что в -распаде также не сохраняется зарядовая чётность. Соответствующее примечание при корректуре было сделано в нашей работе. Аналогичное утверждение было также в работе By и др., где авторы ссылались на сделанную позже нашей работу Ли, Оме и Янга. В Нобелевских лекциях Ли и Янг отметили наш приоритет в данном вопросе.
К сожалению, история создания работ Ландау по несохранению чётности завершилась некрасивым эпизодом, о котором не хочется говорить, но из песни слово не выкинешь. Буквально через несколько дней после того, как Ландау отправил свои статьи в ЖЭТФ, он дал интервью корреспонденту Правды, которое тут же было опубликовано. В этом интервью Ландау рассказал о проблеме несохранения чётности и том, как он решил её. О работе Ли и Янга не упоминалось (не говоря уж о нашей). Все теоретики ТТЛ были возмущены этим интервью. Берестецкий и Тер-Мартиросян поехали к Ландау и высказали ему всё, что они об этом думают. А результат их действий был таков: оба они были отлучены от семинара. Я своё мнение непосредственно Ландау не высказывал, но выражал его в разговорах с его сотрудниками, которые, по-видимому, и сообщили его Ландау. Меня Ландау наказал иначе: он вычеркнул мою фамилию из благодарности в своей статье, оставив только Окуня и Рудика. Тут уже не выдержал Померанчук. Он поехал к Ландау и сказал ему (так мне рассказывал сам Чук): «Борис тебе всё объяснил про C, Р и Т. Без него твоя работа не была бы сделана, а ты вычёркиваешь его из благодарности!» Не знаю, что ответил Ландау, но он пошёл на компромисс — он восстановил мою фамилию в благодарности, но не по алфавиту, а второй.