Бигуди для извилин. Возьми от мозга все!
Шрифт:
В процессе научного творчества исключительно важным может оказаться умение видеть и исследовать аналогии (можно найти и связь между количественным аппаратом метода подобия и качественным изучением явления — по аналогии). Автор теории тепловых двигателей Сади Карно уподобил тепловые двигатели давно известным водяным. Их приводит в движение вода, падающая с высоты. Значит, так же переносит энергию «теплота», отбираемая от нагревателя и «падающая» на холодильник [73] .
73
Впоследствии выяснилось: природа тепла принципиально отличается от природы жидкостей. Но аналогия Карно оказалась столь удачна, что выведенные им формулы ничуть не изменились. Разумеется, дело здесь прежде всего в том, что физик сразу же проверил свои расчёты на совпадение с реальностью. Стоит какой-то аналогии дать хоть один явно неверный результат — и она сразу отбрасывается.
Неверная аналогия ставит преграду на пути к
Полагая, что процесс горения подобен дыханию, химик Дж. Пристли экспериментально доказал: растения восстанавливают кислород, израсходованный в процессе дыхания или горения. Д. И. Менделеев вывел принцип периодичности и предугадал открытие некоторых новых химических элементов, пользуясь аналогией со свойствами соседних, уже изученных. Г. Лейбниц нашёл сходство между логическими доказательствами и вычислительными операциями — позднее (правда, через два века) эта аналогия сработала при создании математической логики. Помните, В. Кекуле во сне увидел змею, кусающую свой хвост, и это натолкнуло его на идею структуры бензола в виде кольца — разве это не показывает и то, как работает подсознание, и то, как оно ищет и демонстрирует аналогии в разной форме? А атом в виде Солнечной системы, явившийся Нильсу Бору, по его словам, также во сне?
Как видим, аналогии в науке дают арсенал не только идей, но и решений. Новые идеи в большинстве случаев — давно и хорошо забытые старые, но преобразованные, перелицованные по-новому гипотезы и мысли, которые уже могут быть восприняты, для которых подготовлена почва, пришло время. Для их обоснования подготовлен аппарат — причём не обязательно в этой же области: аналогия, необходимая для прорыва, может придти с совершенно иного направления. Основой такого сближения служит ещё и единообразное устройство материального мира в различных его проявлениях. Говорят: использование картин явлений и процессов по аналогии — твёрдая почва для контролируемого риска.
Аналогия часто удобна для объяснения, облегчения понимания [74] . Без красивых аналогий трудно описать сущность важного научного открытия. Причём аналогии должны быть наглядны. Представление в упрощённой форме серьёзных научных трудов требует таких же творческих усилий, как и сама научная работа [75] . Многие глубокие научно-популярные книги дают не меньший толчок развитию науки, чем оригинальные работы.
Примитивный пример умозаключения по аналогии из области права. По делу о квартирной краже следователь обращает внимание на то, что преступники проникли в квартиру в то время, когда хозяйка развешивала во дворе выстиранное бельё. Оказалось, что несколько месяцев назад прокуратурой было приостановлено расследование по двум другим делам о квартирных кражах, где преступники использовали аналогичное обстоятельство для проникновения в квартиру. Догадка на основе аналогии подтверждается — квартирные кражи совершены одной и той же группой.
74
На международной конференции по физике многие коллеги В. Гейзенберга выражали сомнение в том, что атомное ядро не содержит электронов. Как это может быть, говорили они, если электроны явно вылетают из ядра, что хорошо видно в ядерных процессах? Не находя уже других аргументов, Гейзенберг закричал коллегам: «Смотрите в окно, вот идут люди в пальто, входят в бассейн. Но они же не плавают в пальто в бассейне! Откуда же уверенность, что из ядра выходят такие же частицы, что были внутри?»
75
Эйнштейн говорил: если учёный не может объяснить, что он делает, пятилетнему ребёнку — значит, он шарлатан. Сам он такие объяснения давал не раз.
Бигуди № 14
А вот ещё вопрос из области права. Двоих людей обвинили в совместном преступлении. Если оба признают себя виновными, каждый получит лёгкое наказание. Если это сделает только один, его освободят, а второго подвергнут суровому наказанию. Если оба не признают своей вины, их обоих освободят от наказания — ибо прямых улик нет. Почему с точки зрения отдельного обвиняемого лучше признаться, а с точки зрения обоих — правильнее не делать этого?21
Опыт в уме
Чрезвычайно эффективный приём творчества — Мысленный эксперимент. Вот один из его примеров. Мы уже вспоминали, как Галилей сбросил с Пизанской башни два пушечных ядра разного калибра — чем наглядно доказал: все тела падают с одинаковым ускорением. Этому предшествовал, как мы уже тоже вспоминали, изящный мысленный эксперимент — тоже весьма наглядный.
Допустим, что прав Аристотель [76] : лёгкое тело падает медленнее тяжёлого. Возьмём те же два ядра — лёгкое и тяжёлое — и свяжем их вместе. Получившаяся связка тяжелее любого из исходных ядер. Значит, и падать должна быстрей. Но с другой стороны, ведь в эту связку входит лёгкое ядро. Оно будет падать медленнее тяжёлого —
76
Великий философ опирался на очевидные наблюдения: камень падает несравненно быстрее пера. Чтобы выделить влияние сопротивления воздуха, понадобилось почти две тысячи лет развития науки.
Заметим: все рассуждения этого мысленного эксперимента вполне логичны. Логика вообще позволяет вывести очень многое. Но логика в чистом виде формальна — перемалывает всё, что будет предложено логически работающей мысли. Нужна подходящая отправная точка. Её правильный выбор — это уже креативный момент.
Такое сочетание логики и креативности ближе к определению диалектической логики, введенному в своё время выдающимся философом Эвальдом Ильенковым. На первый взгляд термин «креативная логика» противоречив: ведь логика — строгое построение цепочки мыслей по единым правилам, а креативность предполагает выход за правила. Но само творчество тоже имеет определённые закономерности построения цепочек. Просто закономерности эти сложнее — но если их удаётся постичь, творчество становится внятным и логичным.
История развития науки свидетельствует о блестящих результатах применения мысленного эксперимента, а современные тенденции развития превращают его в одну из важнейших процедур познания. Мысленный эксперимент использовали Галилей и Ньютон, Мах, Кирхгоф, Максвелл, к нему постоянно обращались Эйнштейн, Бор, Гейзенберг.
Правда, пока отсутствует единая терминология мысленного эксперимента. Его называют умственным, идеализированным, воображаемым, теоретическим.
Мысленный эксперимент — познавательная деятельность, где важное место занимает научное воображение. Д.П. Горский называет мысленным экспериментом метод, «позволяющий прибегнуть к отвлечениям, в результате которых создаётся идеализированный объект (абстракция, идеализация)». С другой стороны мысленный (воображаемый) эксперимент — умственный процесс, строящийся по типу реального эксперимента и принимающий его структуру. Это вид теоретического рассуждения, реализующий одну из основных присущих человеку функций — поиск новых знаний.
Эксперимент [77] , осуществляемый практически, есть вид материальной деятельности, имеющий своей целью исследование объекта, проверку полученных знаний и т д. Всякий материальный эксперимент предполагает выбор определённого объекта исследования и определённого способа воздействия на него. Воздействие осуществляется в строго воспроизводимых условиях, что обеспечивает воспроизводимость результата эксперимента [78] .
Мысленный эксперимент, в свою очередь, развивается из реального эксперимента. На каких-то этапах развития эксперимента субъект не отделяет осмысление его течения от объективного хода экспериментального процесса. Позднее появляется способность проделывать эксперимент как бы про себя, в уме, не воздействуя материально на сам ход эксперимента. Это отражает характерную особенность сознательной человеческой жизнедеятельности: прежде чем производить непосредственно, субъект мысленно решает различные практические и теоретические задачи, совершает сложные и разнообразные мысленные операции, предвосхищающие непосредственное действие.
77
Как неоднократно подчёркивал Н. Бор, в научном познании экспериментом мы обозначаем ситуацию, в которой мы нечто наблюдаем, осознаём и можем, пользуясь языком, сообщить о наблюдаемом другому. Вопрос только — какому «другому»: такому же, как мы, или иному? Этот аспект сформулировал Гейзенберг и соотнёс с интеллектуальным диалогом, который возник у него с Эйнштейном в конце 1920-х годов по поводу методологических особенностей возникающей тогда квантовой теории. Как вспоминает Гейзенберг, Эйнштейн подчеркнул своё понимание наблюдаемости так: «лишь теория решает, что наблюдаемо, а что нет». Таким образом, в глазах Эйнштейна — а его точку зрения принял и Гейзенберг — принцип наблюдаемости не является чисто эмпирическим. Однако, наверное, было бы неверным трактовать его и как только теоретически нагруженный. Смысл этого принципа — в диалоге теории и практики.
78
Идея воспроизводимости долгое время считалась основой науки. Поэтому столь революционной стала квантовая механика, показавшая: даже в идентичных условиях результаты эксперимента могут отличаться. Понадобилось множество натурных и мысленных экспериментов, чтобы уточнить само понятие воспроизводимости.
Мысленный эксперимент — вид познавательной деятельности, в котором структура реального эксперимента воспроизводится в воображении. Между мысленным и материальным экспериментом имеется определённая аналогия. Такая аналогия — существенная черта умственного эксперимента. Исследователь мысленно вводит изучаемый объект во всё новые и новые взаимодействия, ставит его в разнообразные условия, постоянно учитывая возникающие причинно-следственные отношения, пространственно-временные и другие изменения, которые должны при этом совершаться в объекте, и соотнося их с первоначальными условиями и связями. Изучаемое явление многократно повторяется в различном составе и порядке. При этом в нём обнаруживаются новые, ранее неизвестные свойства и стороны.