Чтение онлайн

на главную - закладки

Жанры

Биогаз для чайников

Северилов Павел Викторович

Шрифт:

Рассчитать все это практически невозможно. Поэтому при проектировании биогазовых установок используют экспериментальные результаты, полученные на лабораторных установках, моделирующих требуемый техпроцесс в миниатюре. Также собирается статистика действующих больших БГУ. Статистические данные обрабатываются, группируются, и в результате получаются таблицы рекомендованных параметров техпроцесса и примерные выходные параметры при применении различных типов сырья. Но разброс величин в таких таблицах составляет до 50%.

Поэтому предсказать, например, суточный выход и состав биогаза для проектируемой биогазовой установки изначально можно именно с подобной точностью. Для увеличения точности расчетов до нескольких

процентов, необходимо провести лабораторный эксперимент и соответствующие измерения. Тем не менее, простейшие расчеты позволят хотя бы оценить границы выхода биогаза, особенно верхнюю.

Как известно, исходное сырье состоит из воды и так называемого сухого вещества (СВ). Соотношение воды и сухого вещества сырья характеризуется таким параметром, как влажность.

Сухое вещество сырья состоит из органических (ОСВ) и неорганических веществ. Соотношение неорганических и органических веществ характеризуется таким параметром, как зольность.

Для получения этих параметров, необходимо взять пробы сырья и произвести соответствующие анализы в лаборатории.

Итак, зная тип сырья, и его влажность и зольность, можно посчитать, сколько органического вещества содержится в единице массы сырья. Зная суточное количество исходного сырья, можно посчитать, сколько ОСВ будет попадать в реактор биогазовой установки ежесуточно.

В статистических таблицах обычно указывают, какой объем биогаза выделится из единицы массы ОСВ на протяжении оптимальной длительности цикла брожения этого типа сырья. Обычно, эта величина составляет от 0,2 до 0,8 м3/кг ОСВ. Плотность биогаза составляет примерно 1,13 кг/м3. Поэтому, если бы все органическое вещество превратилось в биогаз, то выход биогаза составил бы 0,885 м3/кг ОСВ. Однако, в процессе анаэробного брожения получается не только биогаз, но также и вода, причем масса выделившейся воды может быть равна массе выделившегося биогаза. Соотношение выделяющихся воды и биогаза зависит от преобладания в процессе тех или иных химических реакций, а оно, в свою очередь, зависит от бактериального состава и исходного состава сырья. Помимо воды и биогаза, образуется еще и некоторое количество минеральных солей.

Кроме того, оптимальная длительность цикла обычно выбирается по критерию максимальной скорости выхода биогаза. После разложения около половины ОСВ в составе сырья скорость выделения биогаза обычно заметно падает. Это связано с тем, что органический состав ОСВ в исходном сырье достаточно неоднороден. Поэтому вначале разлагаются быстрорасщепляемые вещества, а «долгоиграющие» компоненты, типа лигнина, за этот срок остаются почти нетронутыми. Таким образом, глубина разложения биомассы в реакторах БГУ обычно составляет 40-60%. Эта величина может быть больше только при применении однородного искусственно созданного органического сырья, типа глицерина, либо при применении предварительной глубокой гомогенизации сырья, типа кавитационного измельчения, разрушающего даже молекулярные связи.

Вот и получается, что реально из 1 кг ОСВ можно выжать 0,3-0,5 куб.м биогаза.

Теперь разберем это все на примере. Допустим, что в Вашем хозяйстве есть 5 коров, которые стоят в стойле. Их навоз вместе с мочой собирается в отдельную канаву. Влажность такой смеси навоза с мочой обычно составляет около 85%. Суточный выход навоза без мочи у одной коровы доходит до 35 кг. Влажность навоза без мочи обычно составляет около 70%. Плотность навоза без мочи составляет около 950 кг/м3. Зольность сухой фракции коровьего навоза составляет от 2 до 20%,

в зависимости от метода сбора навоза. То есть, все зависит от того, как много примесей песка и камней попадет в навоз. В данном случае зольность должна быть не выше 5 %. Влажность и зольность выбраны из статистических данных, а плотность можно измерить самостоятельно «методом Архимеда» с помощью пружинных весов и ведра.

Из 5 коров в сутки соберется 35*5=175 кг навоза. В этом навозе будет 175*(100-70)/100=52,5 кг сухого вещества. В этом сухом веществе будет 52,5*(100-5)/100=49,875 кг органического сухого вещества. Используя статистически полученное значение удельного выхода биогаза из коровьего навоза 0,4 м3/кг, получим суточный выход биогаза 49,875*0,4=19,95 м3. Следует пояснить, почему мы из удельного выхода биогаза из 1 кг ОСВ за весь цикл брожения получаем суточный выход. Дело в том, что биогазовые установки практически всегда работают в непрерывном цикле. Это обозначает, что каждые сутки в них добавляется суточная доза субстрата, а получившийся излишек шлама сливается. Шлама сливается чуть меньше, чем заливается субстрата, потому что часть содержимого реактора вышла наружу в виде биогаза. Объем реактора выбирается такой, чтобы рабочее пространство реактора вмещало количество суточных доз субстрата, умноженных на длительность цикла в сутках. Так получится, что среднее время пребывания субстрата в реакторе и составит один цикл. Можно представить реактор, как конвейер, длина которого соответствует объему рабочей области реактора. Суточная доза – это один объект на конвейере. Конвейер имеет длину, соответствующую количеству объектов, равному длине цикла в сутках. В сутки конвейер сдвигается на одну дозу. Получается, что скорость переработки составляет 1 дозу в сутки, но благодаря длине конвейера, эта доза находится на нем всю длительность цикла.

За все время цикла должно выделиться столько биогаза, сколько сырья находится внутри реактора. Например, рекомендованная длительность цикла брожения коровьего навоза в мезофильном режиме составляет 16 суток. Значит, внутри реактора всегда находится 16 суточных объемов субстрата. За 16 суток из реактора должно выделиться в 16 раз больше биогаза, чем из одной суточной порции субстрата. Но за одни сутки выделится 16/16=1 порция биогаза, как из суточной порции субстрата за полное время цикла.

Теперь рассмотрим, насколько точно мы сделали расчет суточного выхода биогаза. Если посмотреть накопленную в мире статистику по удельному выходу биогаза из навоза КРС, то величина выхода будет лежать в пределах 0,1-0,8 м3/кг ОСВ. Значит, выход биогаза может соответственно колебаться от 5 до 40 м3. Замечу только, что мой опыт указывает мне в сторону величины 5 м3.

Есть еще одна статистическая величина, при помощи которой мы можем проверить наши расчеты. На больших биогазовых установках собрана статистика по удельному суточному выходу биогаза по отношению к объему реактора. Обычно для коровьего навоза это 0,8-0,9 м3 биогаза на 1 м3 полного объема реактора в сутки.

Посчитаем объем реактора для нашего примера. В сутки мы имеем эквивалент 175 кг навоза влажностью 70%. Мы добавим воду для получения субстрата влажностью 90% (для малой биогазовой установки трудно будет оперировать с субстратом меньшей влажности из-за высокой вязкости). Таким образом, мы получим в сутки 175*(100-70)/(100-90)=525 кг субстрата. Значит, мы добавили 525-175=350 кг (или л) воды. Объем исходного навоза составлял 175/950=0,184 м3, или 184 литра. Значит, общий объем суточной порции субстрата составляет 184+350=534 л. Объем рабочей части реактора должен составить 534*16=8544 л, или 8,544 м3. Обычно, объем газового буфера реактора составляет 20% его общего объема, соответственно, объем рабочей области реактора составляет 80% его объема. Тогда полный объем реактора должен составить 8,544/80*100=10,68 м3.

Поделиться:
Популярные книги

Конунг Туманного острова

Чайка Дмитрий
12. Третий Рим
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Конунг Туманного острова

Никита Хрущев. Рождение сверхдержавы

Хрущев Сергей
2. Трилогия об отце
Документальная литература:
биографии и мемуары
5.00
рейтинг книги
Никита Хрущев. Рождение сверхдержавы

Законы Рода. Том 10

Андрей Мельник
10. Граф Берестьев
Фантастика:
юмористическая фантастика
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 10

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Ланьлинский насмешник
Старинная литература:
древневосточная литература
7.00
рейтинг книги
Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Законник Российской Империи. Том 3

Ткачев Андрей Юрьевич
3. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
дорама
5.00
рейтинг книги
Законник Российской Империи. Том 3

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Бастард Императора. Том 3

Орлов Андрей Юрьевич
3. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 3

Эволюционер из трущоб. Том 7

Панарин Антон
7. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 7

Котенок. Книга 3

Федин Андрей Анатольевич
3. Котенок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Котенок. Книга 3

"Фантастика 2025-1". Книги 1-30

Москаленко Юрий
Фантастика 2025. Компиляция
Фантастика:
фэнтези
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Фантастика 2025-1. Книги 1-30

Маршал Сталина. Красный блицкриг «попаданца»

Ланцов Михаил Алексеевич
2. Маршал Советского Союза
Фантастика:
альтернативная история
8.46
рейтинг книги
Маршал Сталина. Красный блицкриг «попаданца»

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!