Биография атома
Шрифт:
Широко применяется излучение для контроля различных процессов. Например, по степени ослабления излучения можно легко и просто контролировать толщину материалов — стальной ленты, бумаги, искусственной кожи и т. д. Небольшой приборчик, называемый толщиномером, ставят рядом с лентой, сматываемой в рулон, и он безошибочно фиксирует в ее отклонения толщины ленты от заданного размера.
Или еще. Недавно разработан прибор для почти мгновенного определения влажности почвы. Ведь содержание влаги в почве очень важно знать для того, чтобы вовремя начать сев. Устройство прибора основано на изменении плотности почвы в зависимости от содержания в ней влаги. Чем больше влаги, тем сильнее земля поглощает радиоактивное излучение. Такой прибор состоит из
Таких примеров использования искусственных радиоактивных изотопов можно привести очень много. Потребность в изотопах очень велика. Поэтому и открыт в Москве магазин «Изотопы».
Однако обращаться с радиоактивными изотопами нужно осторожно. Ведь излучение в больших дозах вредно действует на здоровье людей. Поэтому изотопы перевозят и хранят в специальных контейнерах с толстыми стенками, полностью поглощающими излучение. Работают с радиоактивными изотопами только специально подготовленные люди. Вот поэтому не каждому продают изотопы в магазине на Ленинском проспекте, а только тем, кто является представителем организации, использующей эти изотопы.
Рассказывая об открытии искусственной радиоактивности, сделанном Фредериком и Ирен Жолио-Кюри в 1934 г., нам пришлось забежать вперед, в нынешние времена. Теперь мы вернемся назад, к 30-м годам нашего века, к следующему этапу в биографии атома.
Как-то раз...
В лаборатории одного из московских научно-исследовательских институтов пропал радиоактивный источник. Этот источник, использовавшийся для физических исследований, представлял собой металлический патрончик величиной с наперсток, внутри которого помещался радиоактивный источник малой мощности.
Сотрудники лаборатории называли его просто «пулька». Источник стоил дорого, и пропажа его грозила серьезными неприятностями для сотрудников лаборатории. Никто, конечно, не сомневался в том, что в пропаже «пульки» не было злого умысла. Такой источник ведь нельзя использовать ни для каких целей, кроме физических исследований. Начали искать. «Пулька» маленькая, могла закатиться в любую щель, и увидеть ее среди многочисленных приборов и оборудования лаборатории было почти невозможно. Поэтому «пульку» начали искать при помощи прибора, регистрирующего радиоактивное излучение. Но все было безрезультатно: признаков радиоактивности ни в одном месте лаборатории не обнаруживалось. Тогда решили, что уборщица, не заметив «пульки», просто вымела ее при уборке лаборатории и вместе с мусором унесла на институтскую свалку. И как ни было неприятно сотрудникам лаборатории идти на свалку и «обследовать» ее, им пришлось это сделать. В течение нескольких часов под иронические замечания и смех сослуживцев незадачливые сотрудники лаборатории «обследовали» весьма солидное количество мусора и отбросов. Однако добились своего. Действительно, в одном из ящиков было обнаружено присутствие радиоактивности: на дне ящика, под мусором, лежала разыскиваемая «пулька». Однако «искатели» считали себя все-таки удачниками: если бы мусор успели вывезти на городскую свалку, то поиски «пульки» там могли бы не увенчаться успехом или уж, во всяком случае, потребовали бы значительно большего и не очень приятного «труда».
1939 год
18 дней
18 дней отделяют 18
И хотя сообщения ученых имели разные названия, в них говорилось об одном и том же: о новом, доселе не известном явлении, происходящем с ядром самого тяжелого в природе элемента — урана. Об этом открытии наш рассказ.
Наблюдения «мальчуганов»
Не удивляйтесь, «мальчуганами» называли группу молодых физиков, образовавшуюся в 1934 г. в Римском университете. В нее входили Сегре, Д’Агостино, Амальди, Разетти, Понтекорво. Возглавлял эту группу Энрико Ферми, будущий великий Ферми, как его потом называли.
Кумиром этих ученых была нейтронная физика. Сколько нового и неизведанного видели они в ней!
Например, облучение элементов нейтронами. Удивительные превращения происходят при этом. Уже было замечено, что, если облучать элементы нейтронами, то в результате поглощения нейтронов ядрами одного элемента, как правило, получаются ядра другого элемента, стоящего на одну клеточку дальше в таблице элементов Менделеева. Это очень интересно.
А что если облучать нейтронами последний элемент — уран? Тогда должен получиться элемент, стоящий уже на 93-м месте. Элемент, которого нет в природе, искусственный элемент! Какой он, как выглядит, как ведет себя? Разве это не заманчиво? Молодым ученым не терпелось это узнать.
Сказано — сделано. Уран облучен нейтронами. Как и следовало ожидать, он приобрел искусственную радиоактивность. Но эта радиоактивность была какая-то странная: после облучения в уране появился не один элемент, как ожидалось, а по крайней мере десяток. И Энрико Ферми, пославший сообщение об этом в научный журнал, писал, что здесь налицо какая-то загадка поведения урана. Возможно, что появился 93-й элемент, но точных доказательств этому нет. С другой стороны, есть доказательства, что появились какие-то другие элементы. Но какие? Это пока неясно.
Совершенно непонятно!
Физики очень заинтересовались сообщением Энрико Ферми. Заинтересовались этим Ирен и Фредерик Жолио- Кюри. Ирен, имеющая большой опыт по химическим исследованиям, решила точно выяснить, прав ли Ферми, высказывая предположение, что после облучения урана нейтронами в нем появляются какие-то новые радиоактивные элементы.
Она повторила опыты Ферми и тщательно исследовала химический состав кусочка урана. И получила невероятный результат. В уране появился элемент лантан! Откуда он взялся? Ведь до облучения в уране его не было, и это было проверено. И вдруг лантан, элемент, стоящий в середине таблицы Менделеева?!
У Фредерика и Ирен сомнений не было. То, что появился новый элемент, это безусловно. Но почему? Это неясно. Значит, надо продолжать исследования.
Ирен Жолио-Кюри права!
Двое известных немецких физиков Отто Ган и Фридрих Штрассман никак не хотели согласиться с результатами опытов Ирен Жолио-Кюри. Откуда было взяться лантану? Нужно как можно тщательнее проверить опыты Ирен
Жолио-Кюри и доказать ей, что она ошиблась. Так они и решили.
Но произошло невероятное! Когда Ган и Штрассман сделали тщательный химический анализ урана (а они и химиками были отличными) после его облучения нейтронами, то убедились, что в уране появился не только лантан, но и барий. А барий также стоит примерно в середине таблицы Менделеева. Снова загадка. Но пришлось признать, что Ирен Жолио-Кюри права.