Биохимия старения
Шрифт:
В другой работе Уильямсон и Асконас [52] иммунизировали мышей-доноров иммуноглобулином G (быка), конъюгированным с динитрофенолом. Иммуноглобулин, вырабатываемый у мышей к этому антигену, очень специфичен, и его можно легко обнаружить. Клетки костного мозга иммунизированных мышей затем трансплантировали реципиентам, иммунная система которых была разрушена интенсивным облучением (рис. 8.4). У реципиентов исследовали продукцию данного иммуноглобулина. Производили серийные пересадки клеток костного мозга от одного поколения мышей другому. После четырех трансплантаций выработка иммуноглобулинов снижалась вследствие постепенного уменьшения скорости деления с каждой последующей пересадкой, хотя кроветворные клетки были функционально активными в течение
Опыты по изучению влияния возраста донора на пролиферативную способность кроветворных клеток дали противоречивые результаты. Харрисон и Даблдей [23] иммунизировали молодых и старых мышей эритроцитами барана (SRBC). Клетки костного мозга и селезенки затем серийно пересаживали молодым летально облученным реципиентам и оценивали колониеобразующую активность стволовых клеток в селезенке. Оказалось, что клетки мышей обоих возрастав имеют почти одинаковую способность к образованию колоний. Это противоречит данным Макинодана и др. [36] и Уильямсона и Асконаса [52], которые сообщили об ослаблении иммунной компетентности у мышей с возрастом. Возможно, что эти различия объясняются неодинаковой длительностью интервалов между пересадками.
Дениел и его сотрудники изучили пролиферативную активность эпителия молочной железы при серийных пересадках. Молочную железу реципиента удаляли и на ее место помещали кусочки ткани молочной железы донора размером 0,5 мм. Когда реципиент старился, пересаженную ткань переносили молодым мышам (рис. 8.5). Примерно после семи последовательных пассажей пролиферация эпителиальных клеток уменьшалась, трансплантаты сморщивались и гибли [7-12]. В других опытах было показано, что если промежуток между пересадками равен 3 мес, то трансплантат уменьшается в размерах быстрее и сохраняется только около двух лет. Если, однако, интервал продлить до 1 года, то трансплантат живет в течение шести пассажей (шести лет), хотя и становится меньше.
Рис. 8.5. Схема серийных пересадок ткани молочной железы мышей [10]. Первичные имплантаты получают из одной железы донора и пересаживают в 10–14 жировых подушечек реципиента, освобожденных от железистой ткани (генерация I). Материал для последующих пересадок всегда берут из наиболее активно растущего трансплантата предшествующей генерации. Скорость роста выражают в средних процентах прижившихся трансплантатов данной генерации
Для того чтобы выяснить, какое влияние оказывает возраст донора на рост и пролиферацию ткани молочной железы, производили одновременную пересадку донорского материала, полученного от 3- и 26-месячных мышей, на контралатеральные участки трехмесячным реципиентам [54]. В идентичных условиях ткани были серийно пересажены пяти поколениям мышей, после чего они деградировали и погибали. Причиной отсутствия возрастных различий могла быть девственность старых самок-доноров и связанное с этим функционально неактивное состояние клеток их молочных желез. В обратном эксперименте, при пересадке ткани молочной железы 26- и 3-месячных мышей на контралатеральные участки 26-месячных мышей, ни один трансплантат интенсивно не развивался. На результат этого опыта могло повлиять ухудшение эндокринного статуса, которое наблюдается при старении.
Исследования показывают, что эукариотические клетки всех типов подвержены
1. Barnes D. W. H., Loutit J. F., Micklem H. S. Ann. N. Y. Acad. Sci., 99, 374–385 (1962).
2. Baserga R. L. In: The Handbook of the Biology of Aging (C. E. Finch and L. Hayflick, Eds.), 101–121, Reinhold, New York (1977).
3. Burnet F. M. Lancet, 2, 358–360 (1970).
4. Carrel A., Ebeling A. H. J. exp. Med., 34, 599–623 (1921).
5. Cohn A. E., Murray H. A. J. exp. Med., 42, 275–290 (1925).
6. Cudkowicz G., Upton A. C., Shearer G. M., Hughes W. L. Nature, 201, 165–167 (1964).
7. Daniel C. W. Adv. Gerontol. Res., 4, 167–199 (1972).
8. Daniel C. W. Experientia, 29, 1422–1424 (1973).
9. Daniel C. W. In: The Handbook of the Biology of Aging (C. E. Finch and L. Hayfick, Eds.), 122–158, Reinhold, New York (1977).
10. Daniel C. W., Aidells B. D., Medina D., Faulkin L. J., Jr. Proc. F.A.S.E.B… 34, 64–67 (1975).
11. Daniel C. W., DeOme K. B., Young J. T., Blair P. B., Faulkin L. J. Proc. nat Acad. Sci., USA, 61, 53–60 (1968).
12. Daniel C. W., Young J. T. Expl. Cell Res., 65, 27–32 (1971).
13. Dreyfus J. C., Rubinson H., Schepina F., Weber A., Marie J., Kahn A. Gerontology, 23, 211–218 (1977).
14. Ebeling A. H. J. exp. Med., 17, 273–285 (1913).
15. Evans C. H. Differentiation, 5, 101–105 (1976).
16. Goldstein S. Lancet, 1, 424 (1969).
17. Goldstein S. New Eng. J. Med., 285, 1120–1129 (1971).
18. Goldstein S., Littlefield I. W., Soeldner J. S. Proc. nat. Acad. Sci., USA, 64, 155–160 (1969).