Биологически активные
Шрифт:
В первом приближении предполагается, что реакция органа-мишени или ткани-мишени пропорциональна количеству молекул биорегулятора, связавшихся с рецепторами. Для малых концентраций это справедливо всегда, но по мере роста количества комплексов эта закономерность нарушится.
Среди возможных причин рассмотрим два, в известном смысле крайних, случая. Первый: молекулами биорегулятора занята лишь часть рецепторов, однако и этого достаточно, чтобы вызвать максимальный ответ (ведь никакая реакция органа-мишени не может развиваться беспредельно). В этом случае говорят о наличии рецепторного резерва – это те «избыточные» рецепторы, взаимодействие которых с биорегулятором уже не влияет на реакцию, она достигла максимального значения.
Второй случай: реакция и в самом деле пропорциональна количеству
Второй случай встречается довольно редко; в первом же приходится задаваться вопросом о форме функции, определяющей зависимость реакции от числа занятых рецепторов. Это может быть кривая, выходящая на насыщение (сколько ни добавляйте новых комплексов, усиления реакции нет), сигмоидная зависимость (по мере роста количества комплексов реакция развивается сначала медленно, затем скачкообразно возрастает), либо, наконец, наиболее распространенная переходная кривая – рост – насыщение – падение; очень высокие концентрации биорегулятора, вызывают депрессию органа-мишени.
Представляет, однако, интерес не столько форма зависимости реакции от количества образовавшихся комплексов, сколько необычайная прямо-таки чувствительность клетки-мишени.
Несколько цифр
Не раз уже упоминалось, что гормоны и многие другие им подобные биорегуляторы действуют на клетки-мишени в очень низких концентрациях – 10 –7, 10 –9, даже 10 –11моля на литр. Надо признать, что все эти десятки с большими положительными или отрицательными степенями на страницах научно-популярной литературы срабатывают неважно; может быть, уж лучше бы написать десятичную дробь с одиннадцатью знаками после запятой. Еще лучше, конечно, попытаться осмыслить масштабы их «малости» (или «огромности») в каких-то содержательных понятиях.
Именно это мы попытаемся сейчас сделать на конкретном примере. Есть в животном организме пептидный биорегулятор ангиотеизин – фрагмент белка, состоящий из восьми аминокислотных остатков: Asp – Arg – Val – Туг – Val – His – Pro – Phe (аспарагиновая кислота – аргинин – валин – тирозин – валин – гистидин – пролин – фенилаланин).
Его функции довольно разнообразны; одна из них – это стимуляция клеток клубочковой зоны коры надпочечников, которые под его действием начинают выделять стероидный гормон альдостерон. Категорически уклонимся от рассмотрения вопроса о том, что происходит в результате и вообще зачем это нужно организму; по поводу так называемой ренин-ангиотензин-альдостероновой системы, звеньями которой являются оба биорегулятора, написаны тома, пересказывать содержание которых непросто, а главное – совершенно ни к чему в свете стоящей перед нами задачи.
Для экспериментальной оценки активности препаратов ангиотензина обычно приготавливают суспензию клеток-мишеней, добавляют в нее испытуемый препарат и следят за выделением клетками в окружающую среду альдостерона. Клетки начинают секретировать альдостерон уже в присутствии 10 –10...10 –9моля ангиотензина.
До какой степени это низкая концентрация? В одном кубическом сантиметре раствора концентрации 1 моль на литр содержится 6·10 20молекул. Таким образом, в кубическом сантиметре испытанного нами раствора находится 6·10 10молекул. 60 миллиардов, не так уж как будто и мало. Правда, и клетки-мишени невелики, их линейные размеры – около микрометра, то есть 10 –4сантиметра; соответственно объем одной клетки – порядка 10 –12кубического сантиметра.
Предположим, что клетки занимают один процент инкубационной среды по объему, то есть в 1 кубическом сантиметре их окажется 10 10штук. Тем самым на каждую клетку приходится шесть молекул ангиотензина.
Приведенный
Опять же, в интуитивном нашем представлении и та и другая очень малы, так что не мешает сопоставить еще несколько цифр. Молекулы биорегуляторов имеют размер от нескольких десятых нанометра (скажем, адреналин) до нескольких нанометров (белковые гормоны). Размеры большинства животных клеток – порядка микрометра или нескольких микрометров. Различие в линейных размерах тем самым – 10 3...10 4. Иными словами, молекулы многих биорегуляторов рядом со своими клетками-мишенями должны выглядеть так же, как сами клетки рядом, например, с ириской или как зернышко пшена рядом с БелАЗом. Впрочем, для различных молекул и различных клеток эти оценки могут изменяться примерно на порядок в ту или иную сторону, так что это окажется зернышко уже не пшена, а гречки или мака – суть вывода не меняется: молекулы все же очень малы по сравнению с клетками, и кажется удивительным, что «посадка» нескольких ничтожных частичек на поверхность такой махины вызывает развитие в ней каких-то бурных процессов.
Ясно, что внутри клетки должны существовать какие-то системы, многократно усиливающие эффект взаимодействия молекулы гормона с расположенным на ее поверхности рецептором.
Один из самых универсальных механизмов подобного усиления открыт Э. Сэзерлендом в 1960 году. Сэзерленд исследовал действие упоминавшегося уже гормона адреналина на клетки печени, в которых он вызывает расщепление гликогена (крахмалоподобного запасного вещества) с образованием глюкозо-1-фосфата. Эта реакция катализируется ферментом гликоген-фосфорилазой, активность которой в клетках печени резко возрастает под действием адреналина. Почему?
Сам адреналин внутрь клетки не проникает, он лишь связывается с рецепторами на ее поверхности. Рецептор же адреналина образует комплекс с молекулой фермента аденилатциклазы, причем этот комплекс проходит через мембрану насквозь, так что с внутренней стороны мембраны в цитоплазму выступает активный центр фермента. Организация комплекса такова, что при связывании рецептором молекулы адреналина активизируется аденилатциклаза; детали механизма активации пока неизвестны. Субстратом аденилатциклазы является АТФ (аденозин-3-фосфат). АТФ – важнейший участник процессов превращения энергии в клетке. К молекуле аденозина (об этом соединении уже была речь выше, при обсуждении структуры нуклеиновых кислот) присоединена цепочка из трех остатков фосфорной кислоты. Аденилатциклаза отщепляет от АТФ два фосфатных остатка, а третий соединяет с остатком рибозы второй валентной связью, так что образуется цикл:
Это соединение называется циклическим аденозинмонофосфатом, или цикло-АМФ.
Цикло-АМФ выполняет функцию внутриклеточного биорегулятора (как оказалось впоследствии, не только в рассматриваемой реакции клеток печени на адреналин, но и во многих других реакциях, индуцированных гормонами). Внутриклеточным рецептором цикло-АМФ является неактивная форма фермента протеинкиназы. Происходит это следующим образом. Неактивная форма протеинкиназы – это комплекс, образованный четырьмя белковыми молекулами двух типов. Одна пара представляет собой собственно ферменты, другая – регуляторные субъединицы. Собственно, их регуляторная функция заключается в том, что, образуя с ферментными субъединицами описываемый комплекс, они лишают их каталитической активности.