Биологически активные
Шрифт:
...Рассмотрим данные, картина такова:
Ноги четыре, уха два,
Шерсть тона светлого, длинней всего на холке.
Имеет хвост, украшенный метелкой,
Способен оглушительно реветь...
«Так это ж лев!» – разинул рот медведь.
При ближайшем рассмотрении обладатель анкеты оказался ослом. В этой истории, как в капле воды, отражены неприятности, подстерегающие авторов распознающих программ; в частности, сразу бросается в глаза использование малоинформативных признаков: «ноги четыре» и в особенности «уха два».
За прошедшие с тех пор два с лишним десятилетия теория распознавания образов значительно шагнула вперед, и во многих сферах использование ее методов для решения различных прикладных задач стало повседневной практикой. К сожалению, этого нельзя пока сказать о задачах выявления связи структура – активность, хотя и на этом пути достигнут определенный прогресс.
Один
Рассмотрим подробнее в качестве примера так называемый логико-структурный подход к изучению связи структура – активность, развиваемый упоминавшимся А.Б. Розенблитом и В.Е. Голендером.
Сами авторы объясняют отличие своего подхода от традиционных методов теории распознавания образов следующими словами: «При исследовании проблемы связи структура – активность методы распознавания образов представляются нам недостаточными потому, что основная их цель – найти решающее правило классификации объектов. Для нас же не только важно найти решающее правило, с помощью которого можно было отнести данное соединение к определенному виду (или нескольким видам) активности, но. не менее важно на основе обучающей последовательности выявить структурные признаки, руководствуясь которыми химик мог бы синтезировать новые соединения с наперед заданной активностью. Разумеется, важно иметь оценку достоверности признака».
Очевидно, при таком подходе сохраняется и необходимость создания специального языка для описания химической структуры соединений, и использование некоторой классификации типов их биологической активности с учетом того обстоятельства, что возможна принадлежность соединения к двум или нескольким классам сразу, то есть допускается наличие у него нескольких типов биологической активности. Наконец, необходима разработка соответствующим образом организованных банков данных.
Для демонстрации сути приема, лежащего в основе алгоритма отбора признаков, характерных для определенного типа биологической активности, авторы рассматривают простейший пример группы соединений, принадлежащих одному ряду и различающихся лишь характером заместителей в четырех положениях. Можно для определенности взять некоторое циклическое ядро или фрагмент алифатической цепочки с заместителями R 1, R 2, R 3, R 4. Например:
Эти заместители могут быть радикалами –NH 2, –CH 3, –C 2H 5, –C 6H 5, –H, –F, –Br, –NO 2и др. в различных комбинациях.
Все соединения разделены на две группы, обладающие определенным видом биологической активности и лишенные ее. Будем попарно сопоставлять представителей каждой группы, отмечая всякий раз совпадения и несовпадения характера заместителей в отдельных положениях. В результате выяснится, что, скажем, комбинации R 1 = –H, R 3 = –Br и R 1 = –CH 3, R 2 = –NH 2наблюдаются только у активных соединений, комбинации R 1 = –H 1, R 4 = –NO 2и R 1 = –CH 3, R 2 = –C 6H 5– только у неактивных. Помимо этого, есть и признаки, встречающиеся у представителей обеих групп. Можно подсчитать и частоту наблюдения различных совокупностей заместителей в двух группах и на этой основе получить простое решающее правило, приняв некоторое ее пороговое значение, превышение которого указывает на активность.
Обнаружив у анализируемого соединения признаки, характерные для группы активных веществ, а это могут
Все действительно логично («логико-структурный подход»!) и как будто очень просто. Просто, однако, только в случае рассмотренного игрушечного примера. Для реализации этого подхода применительно к задачам, представляющим реальный интерес, потребовалось создание весьма сложных систем. Одну из таких систем авторы ее нарекли ОРАКУЛ (Оптимизированный Распознающий Алгоритм Конструирования Усовершенствованных Лекарств). Главе, в которой содержится ее описание, они предпослали в качестве эпиграфа утверждение авторитетнейшей Британской энциклопедии: «Все, относящееся к оракулам, непосредственно связано с магией».
Несколько необычные конструкторы
Очень уж сильно мы уклонились от цели наших первоначальных рассуждений. Оправдание кое-какое, конечно, есть: интересно все это. Но ведь начался весь разговор с того, что очень было бы нужно научиться, лишь взглянуть на формулу нового соединения, тут же и определять: «Вот это, видно, будет сильнейшим снотворным!» – или: «Как огня избегать попадания в питьевую воду! Почти наверняка – страшный ингибитор...» (неважно уж, чего).
Это – два основных класса задач, для которых, собственно, и разрабатывались столь пространно обсуждавшиеся выше методы анализа отношений структура – активность.
Гораздо чаще преследовалась цель создания средств целенаправленного конструирования биологически активных соединений, прежде всего лекарств. Появившийся за рубежом термин «драг-дизайн» (drug – лекарство, design – проектирование, конструирование) часть отечественных авторов пыталась перевести почти буквально («вычислительное конструирование лекарств»); другая же ввела в профессиональный обиход прямо в иноязычном звучании – и правда, чем драг-дизайн хуже, например, того же бутерброда!
Итак, предполагается, что химик-синтетик, занятый поиском новых, более эффективных биологически активных веществ определенного класса, перед тем как приступить к синтезу очередного соединения данного ряда (что делалось до сих пор на основе преимущественно эмпирической (мягко говоря), применялся тот самый метод проб и ошибок), итак, садится наш химик за дисплей или, что вероятнее, усаживает туда своего друга – специалиста по анализу отношений структура – активность, и говорит ему вальяжно:
– Понимаешь, подумал я: все дело в том, что в пятом положении слишком малообъемный радикал сидит – метил. Мне кажется, в том все и дело. Если ввести что-то помассивней, скажем, фенил...
Пока он пространно объясняет, почему, по его мнению, фенил лучше метила, друг его кончает поединок с клавиатурой, а высвободившиеся в результате пальцы использует для того, чтобы нервно барабанить по столу в ожидании появления результата на дисплее. Он и впрямь появляется довольно скоро, но химика, к сожалению, совершенно не удовлетворяет»: активность выдуманного им соединения с вероятностью более 95 процентов будет практически нулевой.
– Э-э, постой, – тут же откликается химик. – Я понял, в чем дело! Надо пропорционально уменьшить объем другого заместителя, и тогда...
Прозабавлявшись таким образом часик-другой, друзья наконец нащупывают структуру, которая сулит нечто интересное, и синтетик, бережно неся в руке распечатку, удаляется в свою лабораторию, горестно рассуждая между тем, где же ему взять необходимый для такого синтеза реактив.
Далее события могут развиваться по-разному. Либо синтезированное «по наводке» ЭВМ вещество действительно окажется весьма активным (к обоюдной радости участников описанной истории); либо, что вероятнее, ничего из этой затеи не выйдет. Химик тогда, без особой, впрочем, убежденности, станет говорить, что все эти компьютерные штучки он, собственно, никогда всерьез не принимал, коллега же, оправдываясь в тоне насколько агрессивном, начнет доказывать, что, поскольку применяемые им процедуры вероятностные, то они гарантируют успех в среднем. Скажем, знаменитый Эрлих получил свой знаменитый же препарат сальварсан, синтезировав (и испытав) 606-е по счету соединение. Конечно, будь в распоряжении Эрлиха наши программы, он тоже не получил бы сальварсан первым же синтезом, но и уж никак не 606-м, мы бы нащупали его раньше, а может быть, как знать? – нашли бы и что-нибудь поэффективнее. Горестно только поворчит химик, припомнив, как он униженно клянчил у Аркадия Яковлевича этот несчастный карбобензокси... и т.д., и сядут они опять плечом к плечу у дисплея, натужно соображая: может быть, увеличить нуклеофильность заместителя в пятом положении? А ну-ка попробуем...