Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Шрифт:
Сегодня некорректно говорить, что чёрные дыры не испускают никакого света. Возьмите закопчённый котелок, разогрейте его до нескольких сотен градусов, и он начнёт светиться красным. Ещё горячее — и свечение станет оранжевым, затем жёлтым и, наконец, ярким голубовато-белым. Любопытно, что, согласно определению физиков, Солнце является чёрным телом. Как странно, скажете вы: трудно вообразить что-то более далёкое от чёрного, чем Солнце. И действительно, поверхность Солнца испускает огромное количество света, но она ничего не отражает. Это делает его для физика чёрным телом.
Охладите горячий котелок, и он станет светиться в невидимом инфракрасном свете. Даже самые холодные объекты испускают немного электромагнитного излучения, если только не находятся при абсолютном
Но излучение, испускаемое чёрными телами, — это не отражённый свет; оно порождается колебаниями и столкновениями атомов, и, в отличие от отражённого света, его цвет зависит от температуры тела.
То, что объяснил Деннис Скиама, было удивительно (и казалось в то время немного сумасшедшим). Он говорил, что чёрные дыры — это чёрные тела, но они не находятся при абсолютном нуле. Каждая чёрная дыра имеет температуру, зависящую от её массы. И формула этой зависимости была на доске.
Он рассказал и ещё об одной вещи, в некотором смысле самой поразительной. Раз чёрная дыра обладает теплотой и температурой, она должна испускать электромагнитное излучение — фотоны — точно так же, как и горячий чёрный котелок. Это означает, что она теряет энергию. Согласно эйнштейновской формуле E=m•c2, энергия и масса — это в действительности одно и то же. Так что если чёрная дыра теряет энергию, она также теряет и массу.
Вот мы и подошли к кульминационному пункту рассказанной Скиамой истории. Размер чёрной дыры — радиус её горизонта — прямо пропорционален массе. Если масса убывает, значит, размер чёрной дыры уменьшается. Так что, излучая энергию, чёрная дыра съёживается, пока не станет размером не больше элементарной частицы, и тогда она исчезает. Согласно Скиаме, чёрные дыры испаряются, подобно лужам в летний день.
На протяжении всей лекции, по крайней мере той части, что я застал, Скиама ясно давал понять, что не он является автором этих открытий. «Стивен говорит то», «Стивен говорит это»… Но, несмотря на слова Денниса, к концу лекции у Меня сложилось впечатление, что безвестному студенту Стивену Хокингу просто посчастливилось оказаться в нужное время в нужном месте, чтобы попасть в исследовательский проект Денниса. Для известного физика обычное дело — многократно упоминать на лекции яркого студента. Была идея блестящей или безумной, для меня было естественно предполагать, что она исходит от более крупного учёного.
В тот вечер я был глубоко не прав с этим допущением. Мы с Оге и ещё несколько преподавателей физического факультета позвали Денниса на ужин в замечательный итальянский ресторан в квартале «Маленькая Италия». За едой Деннис всё рассказал нам о своём замечательном студенте.
На самом деле Стивен вовсе не был студентом. Когда Деннис говорил о «своём студенте Хокинге», это было примерно в том смысле, в котором гордый отец нобелевского лауреата может говорить «мой мальчик». К 1974 году Стивен был восходящей звездой в мире общей теории относительности. Он и Роджер Пенроуз сделали огромный вклад в эту науку. Лишь в силу моего глубокого Неведения я мог подумать о нём как об обычном студенте у знаменитого научного руководителя.
Под добрую итальянскую еду и отличное вино я слушал потрясающую историю, удивительнее всякого вымысла, о молодом гении, который прославился лишь после того, как у него выявили неизлечимое изнурительное заболевание. Блестящий, но невыразимо эгоцентричный и поверхностный аспирант — Деннис говорил, что его чаще можно было увидеть разгуливающим навеселе со своими пьющими приятелями, чем изучающим физику, — Стивен получил диагноз «боковой амиотрофический склероз», или болезнь Лу Герига. Заболевание быстро прогрессировало, и ко времени нашего ужина Хокинг был уже почти полностью парализован. Но, хотя он не мог писать уравнения и был едва способен общаться, он боролся со своим медицинским роком, одновременно блистая фейерверком замечательных идей. Прогноз был печальным. Болезнь Лу Герига — это брутальный убийца, и, по всем расчётам, Стивен уже пару лет как должен был быть мёртв. Между тем он
Стивен и Скиама, они оба были для меня неизвестными величинами, и я понятия не имел, является ли испарение чёрных дыр небылицей, дикой спекуляцией или гениальной идеей. Вполне могло быть, что я пропустил какую-то важную часть доказательства, пока просвещался по части еврейских законов о туалетной бумаге. Более вероятно, что Деннис просто сообщил вывод Стивена, не поддерживая его техническими обоснованиями. В конце концов, Скиама не был экспертом в передовых методах квантовой теории поля, использованных Хокингом. Как я уже говорил, он не злоупотреблял уравнениями.
Оглядываясь назад, я нахожу странным, что не связал лекцию Скиамы с коротким разговором, который двумя годами ранее состоялся у меня с Ричардом Фейнманом в кафе «Уэст Энд». Мы с Фейнманом тоже рассуждали о том, как чёрные дыры могут в конце концов распадаться. Но прошло много месяцев, прежде чем я всё это соотнёс.
Доказательство Стивена
Стивен, по его собственным словам, сначала не поверил странному выводу, сделанному Якобом Бекенштейном, в то время никому не известным принстонским студентом. Каким образом чёрные дыры могут обладать энтропией? Энтропия связана с незнанием — незнанием скрытой микроскопической струкутуры, подобно нашему незнанию точного положения молекул в ванне с тёплой водой. Эйнштейновская теория гравитации и решение Шварцшильда для чёрной дыры ничего не говорят о микроскопических сущностях. Более того, похоже, что в чёрной дыре просто нет ничего, что можно было бы не знать. Шварцшильдовское решение уравнений Эйнштейна было единственным и точным. Для каждого значения массы и углового момента было одно, и только одно решение, описывающее чёрную дыру. Именно это имел в виду Джон Уилер, говоря, что «чёрные дыры не имеют волос». Согласно обычной логике, уникальная конфигурация (вспомните идеальный BMW из главы 7) не должна обладать энтропией. Бекенштейновская энтропия не имела смысла для Хокинга, пока он не изобрёл свой собственный способ думать о ней.
Ключом для Хокинга стала температура, а не энтропия. Само по себе существование энтропии не подразумевает, что у системы есть температура [78] . Третья величина, энергия, также входила в уравнения. Связь между энергией, энтропией и температурой отсылает нас кзарождению термодинамики [79] в начале девятнадцатого века. В моде тогда были паровые двигатели, а француза Николя Леонара Сади Карно можно было назвать паровым инженером. Он интересовался очень практичным вопросом: как самым эффективным способом использовать тепло, содержащееся в данном количестве пара, для выполнения полезной работы — как получить максимальный навар с бакса. В данном случае под полезной работой подразумевалось ускорение локомотива, для чего требовалось преобразовывать тепловую энергию в кинетическую энергию большой массы железа.
78
Теоретически можно вообразить систему, которая переупорядочивается без изменения энергии, но в реальном мире такого никогда не бывает.
79
Термодинамика — учение о теплоте.
Тепло — это неорганизованная хаотическая энергия случайного движения молекул. Напротив, кинетическая энергия локомотива организована в форме одновременного синхронизированного движения огромного числа совместно движущихся молекул. Так что задача состояла в том, чтобы превратить определённое количество неорганизованной энергии в организованную. Проблема состояла в том, что никто на самом деле не понимал, что в точности означает «организованная» и «неорганизованная» энергия. Карно первым определил энтропию как меру неорганизованности.