БИТВА ЗА ХАОС
Шрифт:
Наполеон умер в 1821 году. Через три года после смерти величайшего из французов, его соотечественник Сади Карно описал циклический процесс работы тепловой машины названный затем его именем. Он впервые показал, что полезную работу можно получить только передав энергию от более теплого тела к более холодному, сделав, таким образом, первый шаг к понимаю направленности и односторонности реальных физических процессов во времени. Так интеллектуалы XIX века, как и их первобытные предки, выходили на связь тепла, работы и времени, но теперь они пошли гораздо дальше, заглянув чуть позже в мир, в который древний человек не рисковал соваться.
Собственно то, что сформулировал Карно, стало впоследствии вторым законом термодинамики. Более точно его записал Томпсон в 1851 году: «В природе невозможен процесс, единственным результатом которого была бы механическая работа, полученная за счет охлаждения теплового резервуара». Таким образом, окончательно устанавливалась неравноценность и асимметрия физических процессов: работу можно было превратить в тепло полностью, а вот тепло в работу — нет. Более того, стало ясно, что физические тела содержат скрытую энергию, которая ни при каких обстоятельствах не сможет быть превращена в работу. Это хоронило все надежды создателей т. н. «вечного двигателя второго рода». А как все захватывающе начиналось! Поправка закона сохранения механической энергии на тепло, т. е. введение первого закона термодинамики, давало повод для оптимизма. Ведь если тепло — та же энергия, то почему мы не можем ее забрать и превратить в полезную для себя работу? И если не получается сделать чисто механический или тепломеханическй движок, то почему бы не реализовать тепловой, тем более что открытые законы сохранения его создания никак не запрещали. Почему бы не отбирать тепло у морской воды? Пошли глобальные проекты. Например, использовать энергию земного тепла. Земля ведь, как известно, внутри даже не теплая — раскаленная! Быстро
Итак, век «огня и пара» вывел термодинамику в доминирующее направление, отодвинув на второй план механику, завершенную в XVII веке Ньютоном. Тем не менее, исходного определения тепла вообще не существовало, несмотря на то, что еще древние связывали тепло с некой разновидностью движения. Уже был поправлен закон сохранения механической энергии учитывающий и тепловые процессы, а вопрос что обуславливает степень нагрева предмета, оставался открытым. Поразительно, но первые состоятельные гипотезы, позже оформленные Больцманом в кинетическую теорию газов, были выдвинуты тогда, когда были обозначены основные принципы поведения толпы. В наше время появился термин «температура толпы», взят он явно из термодинамики и объяснений не требует, вспомним расхожие выражения «разгоряченная толпа» или «подогретая толпа». А тогда было показано, что температура вещества — это мера движения его молекул. Молекулы движутся хаотично, соударяются друг с другом и их средняя результирующая скорость как раз и оказывается пропорциональной температуре. Vср2=(3kT/m) (k — постоянная Больцмана, T — температура в Кельвина, m — масса молекулы). Это был первый шаг к переходу к статистическим оценкам, когда результирующее действие системы оценивалось как сумма воздействий большого множества составляющих. Причем кинетическая теория не давала, например, ответа с какой скоростью может двигаться та или иная молекула или какой диапазон этих скоростей. Теоретически, скорость может быть любой, важен суммарный (точнее — среднестатистический) результат. Точно как в толпе, которая выравнивает всех индивидов вне зависимости от их параметров.
Переход к статистическим оценкам менял традиционное представление о многих явлениях, причем даже не в физике, а в чисто «человеческих» сферах деятельности — в политике и социологии. С толпами, казалось бы, всё ясно. В толпе утрачиваются градации людей по расам, религиям, мировоззрениям, степеням интеллекта и т. п. Большая толпа, пусть и самых расово чистых и умных арийцев, может вести себя так же, как и толпа первобытных негров, вышедших свергать очередную гориллу в погонах правящую Кенией или Верней Вольтой. Толпа оценивается только по суммарной реакции на воздействие. Отдельный индивид в толпе — ничто, вне зависимости от своего качества. Чем больше размер толпы, тем ниже уровень ее коллективного интеллекта. А XIX век как раз и был веком толп, а не только веком термодинамики, он вошел в историю как век массового протестного общественного движения. Промышленная революция, рост предприятий, концентрация производства, требующая соответствующей концентрации рабочей силы. Разделение труда, предполагающее почти армейскую дисциплину на предприятиях, сочетаемое с примитивным положением нарождающегося пролетариата, толкало его на борьбу с целью вырвать у буржуев элементарные права и возможности. Толпа становилось главной силой с помощью которой делалось любое преобразование — от увеличения месячного жалования на какие-нибудь жалкие гроши и вплоть до революций, кровавых восстаний и захватов власти в том или ином государстве. Уже в середине ХХ веке статус толпы будет резко понижен вследствие четкого распределения мировых ролей и полного удовлетворения ее базовых потребностей в развитых странах, но в конце ХХ — начале ХХI толпа вновь будет использована, причем вполне эффективно. Констатируем общеизвестный факт: в 1999–2004 году американцы искусно манипулируя «подогретыми толпами» установили выгодные себе режимы в Сербии, Словакии, Грузии и на Украине. Но тогда, на заре эры толп, техника управления ею еще не превратилась в отдельную прикладную дисциплину, над которой работают целые НИИ подчиненные разведкам собственных или чужих государств. Вместе с прогрессом капитализма бессознательные массы стали втягиваться в политический процесс, главным образом, через введение или расширение избирательного права. И если раньше власть была наследственной или же правитель выбирался очень узким кругом лиц, то теперь в странах с республиканской формой правления или парламентских монархиях, какую-то часть власти формировал народ. Здесь получалось как в термодинамике: сам по себе голос одного человека ничего не значил, будь этот человек хоть Зигфридом, хоть Заратустрой. Его статистический вес был точно таким же, как и вес самого последнего ублюдка и извращенца. Важно было за кого проголосует большинство, а вот по каким законам мыслит большинство пока было неясно. Связать биологию, социологию и термодинамику додумаются только в ХХ веке, пока же были довольно точно сформулированы законы поведения толпы, а главный их смысл состоял в том, что толпе нужно понравиться, для чего она должна слышать то, что хочет услышать. Толпе нельзя предлагать непопулярную мораль, пусть эта мораль и обеспечит ей выживание и рост. Толпа в каждый момент времени стремится к наиболее удобному для себя состоянию, а удобное состояние для нее, в свою очередь, наиболее вероятно. Вот почему толпа не приемлет «лишних сущностей». Никаких мелочей и деталировок. Никакой логики. Больше пафоса и цинизма. Цели — самые глобальные. Но только те цели, которые бессознательно желает достичь масса в конкретный момент времени. Почему в конкретный момент? Да потому, что цели массы варьируются во времени и есть результат действия множества факторов, каждым из которых можно управлять. Даже притом, что каждый ариец — индивидуалист по природе! Вот почему свобода слабо совмещается с высокой плотностью населения, вот почему города — слабые по природе, и чем крупнее город, тем он слабее.
В год, когда Карл Маркс основал свой первый Интернационал, дав старт Мировой Революции, призванной разрушить абсолютно все жизненные устои арийской расы, превратив ареал ее обитания в «пустыню населенную белыми рабами», [9] не имеющих никакой, даже личной собственности, немецкий ученый Карл фон Клаузиус ввел в научный мир новое понятие. Это понятие — энтропия. Введение ее было продиктовано осознанием причин односторонности физических процессов и попыткой рассчитать наиболее вероятное направление таких процессов. Он по-своему переформулировал второй закон термодинамики: «любой самопроизвольный процесс в замкнутой термодинамической системе идет с возрастанием энтропии». Людвиг Больцман дал толкование физическому смыслу энтропии — это «мера беспорядка физической системы». Полный порядок — это минимум энтропии, но система предоставленная самой себе, стремится перейти в состояние максимально возможного (в данных условиях) беспорядка. Максимальная энтропия — это полный хаос. Понятно, что больший порядок наличествует в твердых телах, меньший — в жидкостях, самый наименьший — в газах. При всей кажущейся простоте, энтропия понятие исключительное сложное и точно до сих пор полностью неосмысленное. Ну да, мера беспорядка, мера хаоса, а что такое хаос? Неподготовленный человек воспринимает такие вещи слишком превратно, что говорить про XIX век? Тогда быстро сообразили, что поскольку все происходящие процессы сопровождаются трением и теплообменом, энтропия окружающего нас мира непрерывно возрастает согласно второму закону термодинамики. Это открытие навело ученых на мысль, что через некоторый промежуток времени вся энергия, имеющаяся во Вселенной, превратится в тепло, равномерно распределенное между всеми телами Вселенной, что приведет к выравниванию температуры и полному прекращению каких бы то ни было превращений тепловой, а значит и механической энергии, к «тепловой смерти Вселенной». Энтропия стала как бы «теневой» стороной любого процесса. Действительно, если часть энергии всегда тратится на совершение работы, а другая рассеивается в окружающую среду, то энтропия этой среды повышается. А энтропия как раз и охватывает ту часть энергии, которая никогда не сможет быть превращена в полезную работу, энтропия — это связанная энергия.
9
Эта фраза принадлежит Л.Д. Троцкому и сказана по отношению к России. Взята из книги «Воспоминания» А. Симановича — секретаря Распутина и придворного ювелира Николая II.
США. Пикет против роста энтропии устроенный одной из протестантских сект.
Если мы вспомним про десять человек взятых нами в самом начале как опытная модель, то объяснить что такое энтропия в их «человеческом
Итак, сформулированный закон возрастания энтропии (или ее неуменьшения) однозначно привязывал это понятие к времени. Предполагаемая (пусть и в очень отдаленном будущем) остановка роста энтропии, переход всех процессов в равновесные, казалось бы, подтверждал библейские прогнозы о конце времен. Неудивительно, что в год когда Ле Бон выпустил «Психологию толпы» введя термин «бессознательная масса», Феликс Ауэрбах в своей книге «Царица мира и ее тень» [10] записал: «Над всем, что совершается в беспредельном пространстве, в потоке преходящего времени, властвует Энергия, как царица или богиня, озаряя своим светом и былинку в поле, и гениального человека, здесь даря, там отнимая, но сохраняясь в целом количественно неизменной… Но где свет, там и тень, имя которой — Энтропия. Глядя на нее, нельзя подавить в себе смутного страха — она, как злой демон, старается умалить или совсем уничтожить все то прекрасное, что создает светлый демон—Энергия. Все мы находимся под защитой Энергии, и все мы отданы в жертву скрытому яду Энтропии… Количество Энергии постоянно, количество же Энтропии растет, обесценивая Энергию качественно. Солнце светит, но тени становятся все длиннее. Всюду рассеяние, выравнивание, обесценивание…»
10
Ф. Ауэрбах «Царица мира и ее тень». Одесса, 1913 г. Первое немецкое издание F. Auerbach «Die Weltherrin und ihr Schatten. Ein Vortrag "uber Energie und Entropie» Jena: G. Fischer, 1902. До революции 1917 г. только на русском языке книга переиздавалась 6 раз. Сам автор — немецкий физик и еврей — покончил с собой через месяц после прихода к власти нацистов. На эту небольшую и забавную книгу (77 страниц) я вышел, прочитав двухтомник «Воспоминаний» А.Д. Сахарова. «Мой папа когда-то вспоминал о старой научно-популярной книге, которая называлась “Царица Мира и ее тень” (я, к сожалению, забыл, кто автор этой книги). Царица — это, конечно, энергия, а тень — энтропия. В отличие от энергии, для которой существует закон сохранения, для энтропии второе начало термодинамики устанавливает закон возрастания (точней — неубывания)…».
Такие настроения господствовали среди довольно значительной части интеллектуалов конца XIX века. За эту спасительную соломинку ухватились религиозники, но их радость длилась недолго. Было совершенно ясно, что тепловая смерть — абстракция, которая уже давно бы наступила, если бы в природе, в соответствии с ее железной логикой, не действовали бы силы, работающие против бесконтрольного роста энтропии. Сам Больцман рассуждал так: «Можно представить себе Вселенную как механическую систему, состоящую из громадного числа составных частей, и с громадной продолжительностью существования, так что размеры нашей системы неподвижных звезд ничтожны по сравнению с протяженностью Вселенной, и времена, которые мы называем эрами, ничтожны по сравнению с длительностью ее существования. Тогда во Вселенной, которая, в общем, везде находится в тепловом равновесии, т. е. мертва, то тут, то там, должны существовать сравнительно небольшие области протяженности звездного пространства (назовем их единичными мирами), которые в течение сравнительно короткого времени эры значительно отклоняются от теплового равновесия, причем одинаково часты такие, в которых вероятность состояния увеличивается, и такие, в которых она уменьшается.»
Н. Чернышевский, даже не будучи физиком, довольно четко разобрался в ситуации и одним махом «отбрил» всех прорицателей «тепловой смерти». «Формула, предвещающая конец движения во Вселенной, противоречит факту существования движения в наше время. Эта формула фальшивая… Из того факта, что конец еще не настал, очевидно, что ход процесса прерывался бесчисленное множество раз действием процесса, имеющего обратное направление, превращающего теплоту в движение…». [11]
11
Н.Г.Чернышевский. Избранные философские сочинения. М.: Госполитиздат. 1951, т. III С. 525–534. Прогнозы о «тепловой смерти Вселенной» опровергаются в основном допущением о ее бесконечности, и дальше постулатом, что второе начало не распространяется на бесконечные системы. Впрочем, если верна гипотеза Большого Взрыва и бесконечно расширяющейся Вселенной, то некие необратимые изменения происходить будут, скажем, темп угасания звезд превысит темп их зарождения. Возможно, что это и есть «тепловая смерть».
«Противостояние» энтропии как явлению работающему «на деградацию» началось сразу после введения этого понятия, здесь мощным союзником антиэнтропийных сил выступили биологи. Как раз в те же годы в мир входила органическая химия и теория эволюции. Становилось ясно, что в органическом, а тем более — в биологическом мире, идет постоянное упорядочивание и усложнение, хотя он вроде бы пущен на самотек. Но все же пока можно было вести речь только о пассивном противостоянии. А о начале планового противостояния стало возможным говорить тогда, когда возникли устройства не допускающие (при нормальной работе) хаоса в принципе, когда возникала кибернетика и теория автоматического управления, когда возникли первые роботы и вычислительные машины, работающие строго по заданной программе. Собственно, кибернетика как раз и изучала системы вне зависимости от их материальной природы, но сугубо в контексте приема, обработки, запоминания и передачи информации, разумеется, путем их математического моделирования. Например, человеческий мозг — типовая биологическая кибернетическая система. А ЭВМ — небиологическая. Кибернетические построения, и теоретически, и практически, допускали сбои (дезорганизацию) в работе реальной системы, поэтому понятием «энтропия» стали оперировать и там, только теперь оно было прочно связано с понятием «информация». Сделали это не так давно, в 1949 году. К. Шеннон, через два года после выпуска первого «настоящего» компьютера «Эниак», предложил и формулу для расчета количества информации, которая (что теперь вполне понятно) оказалась изоморфной формуле Больцмана с точностью до постоянной. [12]
12
В качестве единицы информации I принимают количество информации в достоверном сообщении о событии, априорная вероятность которого равна 1/2. Эта единица получила название «бит» (от английского binary digits). Например, вы бросаете игральный кубик. Вероятность выпадения любого числа совершенно одинакова и равна 1/6 (т. к. у кубика шесть граней). А какова вероятность что, например, три раза подряд выпадет число шесть? P = (1/6)3 = 1/216, т. е. одна двести шестнадцатая. Таким образом, если вы бросите кубик 216 раз, у вас практически достоверно в какой-то момент три раза подряд выпадет шестерка, притом, что вероятность выпадения любого числа вообще, равна единице. Допустим, вы бросаете кубик несколько сот тысяч раз. Выпадение трех шестерок подряд — одно из возможных микросостояний системы, другое дело, что разные микросостояния характеризуются разной вероятностью. Если вы хотите чтобы шестерки выпали семь раз подряд, то вероятность осуществления желания понижается до (1/6)7 = 1/279936, т. е. двухсот тысяч бросаний может не хватить. А может случиться так, что шестерки выпадут семь раз подряд сразу. Каждое микросостояние характеризуется информацией которой мы должны владеть чтобы вычислить его вероятность. Очевидно, что чем менее вероятно состояние, тем большую информацию о системе мы должны собрать. В нашем случае, для трех шестерок она будет составлять I = log2216 =7,76 бит, а для семи I = log2279936 = 18,09 бит, т. е. для параллельной передачи такой информации нам бы потребовалось дополнительно еще 11 разрядов. Сумма всех возможных микросостояний (т. е. вероятностей) равна единице. Множитель «постоянная Больцмана» — не более чем пересчет градусов Кельвина в энергию. Можно выбрать градусы так, что он станет не нужен, хотя его введение как раз и иллюстрирует связь термодинамики и теорией информации..