Чтение онлайн

на главную - закладки

Жанры

Блеск и нищета К.Э. Циолковского
Шрифт:

«Действительно, при одной лишь нормальной скорости, прямоугольник сообщает известное движение воздуху близ площади величиной а Ь; при поступательном [параллельном] же движении тот же прямоугольник в одну секунду сообщает движение воздуху близ поверхности длиной в Vp и шириной в а, т.е. площади, величиной в Vp а, которая больше предыдущей в

Каждой части этой воздушной полосы прямоугольник сообщил некоторое движение.

Итак, обозначая силу нормального

давления на плоскую пластинку, происходящую от этой причины через F, найдем на основании формул (5) и (6), что секундная работа равна:

(Мы здесь заменили только номера формул на принятые в настоящей работе – Г.С.)

Обратим внимание, его пластинка увеличилась в размере в Vp/b раз, и вся она страгивает с силой F (в соответствии с (5) или (7)) воздух с места. Для этого «придуманного» К.Э. Циолковским случая появляется зависимость F от a/b. Это, конечно же, совсем не та зависимость, которую подразумевали до сих пор историки аэродинамики, говоря о зависимости силы сопротивления от удлиненности пластинки.

Далее. Пластинка, стронув таким образом поток с места, продолжает его двигать и дальше в установившемся режиме, когда нормальная сила сопротивления вычисляется по принятой в то время обычной формуле (1).

Таким образом, у К.Э. Циолковского – две силы сопротивления, причем обе нормальные, но одна из них возникает у него при параллельном движении пластинки, страгивающей слой воздуха с места, а вторая двигает этот слой находящийся уже в движении. Казалось бы, что при такой модели формулы (1) и (7) должны использоваться по отдельности, каждая при своем режиме движения, но он делает следующий совершенно непонятный шаг. Он писал:

«Вводя во вторую часть этого уравнения (т.е. (7) – Г.С.) множителем поправочный коэффициент к и прибавляя к силе (7) силу (1), происходящую только от нормального установившегося движения, получим:

Считая, что:

где i – «есть угол, составляемый направлением скорости с плоскостью пластинки» [101] [с. 29], он получил:

Итак, пропорциональность силы давления корню квадратному от «продолговатости» (удлинения) пластинки получена для некорректной физической модели сопряжения жидкости и пластинки.

Автор работы [80] писал:

«Но, пожалуй, самый интересный и ценный результат, полученный Циолковским в этой первой его работе, заключается в выяснении влияния продолговатости пластинки (по теперешней терминологии – удлинение) на величину силы давления. Циолковский устанавливает теоретическим путем, что при прочих равных условиях сила давления потока на пластину пропорциональна корню квадратному из ее продолговатости. Этот замечательный закон опережает приблизительно на тридцать лет дальнейшее развитие теории крыла. Циолковский первый из всех исследователей в области аэродинамики указал на значение продолговатости крыльев для летательного аппарата… и дал зависимость силы давления

от продолговатости, качественно близкую к зависимости, устанавливаемой современной теорией крыла» [80] [с. 6-7].

Сам К.Э. Циолковский в феврале 1893 года в своих замечаниях относительно этой работы, отметил, что, по мнению Н.Е. Жуковского, «…закон, выражающий зависимость силы давления жидкости от продолговатости крыла, составляет новость в науке» [157] [с. 7].

С тех пор это мнение и начало без проверки кочевать из одной работы в другую (см., например, [29] [с. 37; 44, с. 6]).

Однако никакого закона о зависимости силы давления от удлинения в этой работе нет.

Эти утверждения просто проекция того, что либо Н.Е. Жуковский не понял К.Э. Циолковского, либо К.Э. Циолковский – Н.Е. Жуковского, или, что вероятнее всего, они не поняли друг друга.

К.Э. Циолковский сделал в своих рассуждениях и следующий шаг. Он отметил, что если угол i мал, то (что неверно):

«…из формулы этой видно, что при малости угла i сила давления пропорциональна синусу i, как это теперь принимают все авторы по сопротивлению» [101] [с. 29].

Внешне совсем безобидная фраза, без всяких претензий на значимость. В самом деле многие авторы получили, как мы увидим дальше, свои эмпирические формулы по величине этой силы, пропорциональной синусу i. Ну и К.Э. Циолковский получил такую же, т.е. подтвердил теоретически давно известное.

Однако когда эта работа оказалась опубликованной, он стал утверждать, что опроверг самого И. Ньютона, в формуле которого эта сила пропорциональна квадрату синуса i. Например, в автобиографии он отметил что он «…нашел, что закон Ньютона о давлении ветра на наклонную пластинку неверен» [172] [с. 101]. И в других своих работах, как мы увидим, он неоднократно это подчеркивал.

Из формулы (9) следует:

и при малом i, sin(i) = i, а i2 = 0, т.е.

что от формулы (10) имеет заметное отличие. Он и здесь допустил ошибку.

Обратим внимание на рис. 2. Если i – мал, то пластинка имеет у К.Э. Циолковского только одну скорость Vp, т.е. движется не нормально, а параллельно потоку. Поэтому и сила сопротивления должна равняться нулю, а останется только сила трения, которую он в свои рассуждения не вводил.

Все исследователи того времени изучали этот вопрос, наоборот, при заметных углах i. При больших i формула И. Ньютона к заметной погрешности не приводила.

Таким образом, и этот аспект его работы ошибочен. Он не только не опроверг или не уточнил формулу И. Ньютона, но и попросту продемонстрировал свое непонимание существа дела.

Самое любопытное в этой работе состояло в том, что его эксперименты совершенно были неадекватны рассмотренной теоретической модели. Поэтому целесообразно продлить наше «свидание» с этой работой и рассмотреть методику его опытов.

Поделиться:
Популярные книги

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Имя нам Легион. Том 10

Дорничев Дмитрий
10. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 10

Убивать чтобы жить 8

Бор Жорж
8. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 8

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Слово дракона, или Поймать невесту

Гаврилова Анна Сергеевна
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Слово дракона, или Поймать невесту

Отверженный VIII: Шапка Мономаха

Опсокополос Алексис
8. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VIII: Шапка Мономаха

Идеальный мир для Лекаря 27

Сапфир Олег
27. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 27

Бестужев. Служба Государевой Безопасности. Книга четвертая

Измайлов Сергей
4. Граф Бестужев
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга четвертая

Пятнадцать ножевых 3

Вязовский Алексей
3. 15 ножевых
Фантастика:
попаданцы
альтернативная история
7.71
рейтинг книги
Пятнадцать ножевых 3

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Право на эшафот

Вонсович Бронислава Антоновна
1. Герцогиня в бегах
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Право на эшафот

Кодекс Крови. Книга ХIII

Борзых М.
13. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIII

Бестужев. Служба Государевой Безопасности. Книга 5

Измайлов Сергей
5. Граф Бестужев
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга 5