Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (АК)
Шрифт:

Возникнув в Древней Греции, термин «А.» впервые встречается у Аристотеля, а затем через труды последователей и комментаторов Евклида прочно входит в геометрию. В средние века господство аристотелевской философии обусловило его проникновение в другие области науки, а через неё и в обыденную жизнь. А. стали называть такое общее положение, которое, будучи совершенно очевидным, не нуждается в доказательстве. Природу этой очевидности видели, следуя взглядам, идущим ещё от Платона, в прирождённости человеку таких основных истин, как математическая А. Учение И. Канта об априорности последних, т. е. о том, что они предшествуют всякому опыту и не зависят от него, было кульминацией таких взглядов на А. Первым крупным ударом по взгляду на А. как на вечные и непреложные «априорные» истины явилось построение Н. И. Лобачевским неевклидовой геометрии.

Критикуя взгляды Гегеля на логическую А. (на фигуры аристотелевских силлогизмов), В. И. Ленин писал: «...практическая деятельность человека миллиарды раз

должна была приводить сознание человека к повторению разных логических фигур, дабы эти фигуры могли получить значение аксиом» («Философские тетради», 1969, с. 172). Именно в обусловленности многовековым человеческим опытом, практикой, включая сюда также и эксперимент, и опыт развития науки,— причина очевидности А., рассматриваемых как истины, не нуждающиеся в доказательстве.

Вместе с тем крушение взгляда на А. как на «априорные» истины привело к раздвоению понятия А. Всё возрастающая в связи с запросами практики необходимость экспериментировать в области построения новых теорий, заменять одну А. другой, а также их относительность, зависимость от ранее встречающихся конкретных условий опыта и уровня развития науки, приводящая к невозможности выбрать раз навсегда и навечно в качестве А. такие положения, которые будут истинны абсолютно во всех условиях, — всё это обусловило появление понятия А. в смысле, несколько отличном от традиционного. Понятие А. в этом смысле зависит от того, построение какой теории рассматривается и как оно проводится. А. данной теории при этом называются просто те предложения этой теории, которые при данном построении её как дедуктивной теории принимаются за исходные, притом совершенно независимо от того, сколь они просты и очевидны. Более того, уже из опыта, например, построения различных неевклидовых геометрий и их последующего истолкования и практического использования стала ясной невозможность при построении (или аксиоматизации) той или иной теории каждый раз требовать заранее истинности её А.

С созданием развитого аппарата математической логики связано дальнейшее развитие понятия А. В формальном исчислении А. является уже не предположением некоторой содержательной научной теории, а просто одной из тех формул, из которых по правилам вывода этого исчисления выводятся остальные доказуемые в нём формулы («теоремы» этого исчисления). См. также Аксиоматический метод и литературу при этой статье.

А.В. Кузнецов.

Аксиоматическая теория множеств

Аксиомати'ческая тео'рия мно'жеств, формулировка множеств теории в виде формальной (аксиоматической) системы (см. Аксиоматический метод). Основным побудительным стимулом для построения А. т. м. явилось открытие в «наивной» теории множеств Г. Кантора. предназначенной для обоснования классической математики, парадоксов (антиномий), т. е. противоречий. Все эти парадоксы (например, парадокс Кантора, связанный с рассмотрением «множества всех множеств», или парадокс Рассела, в котором рассматривается «множество всех множеств, не содержащих самих себя в качестве элемента») обусловлены неограниченным применением в канторовой теории множеств т. н. принципа свёртывания (или абстракции), согласно которому для всякого свойства существует множество, состоящее из всех предметов, обладающих этим свойством (этот принцип фактически содержится уже в первой фразе всех традиционных изложений теории множеств: «мы будем рассматривать произвольные множества элементов произвольной природы» и т.п.).

В первой из известных систем А. т. м. — системе Цермело — Френкеля, или ZF (сформулирована в 1908 Э. Цермело, пополнена в 1921 — 22 и позже А. Френкелем), принцип свёртывания заменяется несколькими его частными случаями: аксиомой существования пары {х,у} любых (данных) множеств х и у, аксиомой существования объединения всех элементов произвольного множества х в новое множество S (x), аксиомой существования множества Р(х) всех частей произвольного множества х, аксиомой существования бесконечного множества и т.н. схемами аксиом выделения (согласно которой для всякого множества х и свойства р существует множество элементов х, обладающих свойством j) и подстановки (утверждающей, что для любого взаимно однозначного отображения элементов множества х, описываемого на языке системы ZF, существует множество таких z, на которые отображаются эти элементы х).

Не подпадает под схему принципа свёртывания т. н. аксиома выбора (о существовании «множества представителей», т. е. множества содержащего в точности по одному элементу из каждого из данных непустых попарно непересекающихся множеств). Как и во всякой другой системе А. т. м., в ZF постулируется также аксиома объёмности (экстенсиональности), согласно которой множества, состоящие из одних и тех же элементов, совпадают. Иногда к ZF присоединяют некоторые др. аксиомы более специального назначения. Формулы ZF получаются из «элементарных формул» вида х ^I уx принадлежит y») средствами исчисления предикатов.

Позднее были построены многочисленные видоизменения ZF и систем, отличающихся от ZF тем, что «плохие» (приводящие к парадоксам) совокупности элементов не вовсе исключаются из рассмотрения, а признаются «собственно классами», т. е. множествами, не могущими принадлежать в качестве элемента другим множествам (эта идея, идущая от Дж.Неймана, была затем развита швейцарским математиком П. Бернайсом, К.Гёделем и др.). Системы эти, в отличие от ZF, могут быть заданы посредством конечного числа аксиом.

Другой подход к А. т. м. воплощён в теории типов Б. Рассела и А. Н. Уайтхеда (Англия, 1910—13) и её различных модификациях, в которых на аксиому свёртывания не накладывают типичных для ZF и др. систем ограничений, но реформируют сам язык теории: вместо одного алфавита переменных х, у, z... вводится бесконечная последовательность алфавитов: x1, y1, z1,...; x2, y2, z2,...;...; xn, yn, zn,...;... различных «типов» n, а элементарные формулы имеют вид xn^Iyn+1 или

xn = yn. Теории типов строятся на основе исчисления предикатов с различными видами переменных [а при естественной замене символики xn^Iyn+1 на yn+1(xn) и xn = yn на xn ~ yn сами могут рассматриваться как системы расширенного исчисления предикатов, а не теории множеств]. В системе NF (New Foundation), введённой в 1937 американским математиком У. в. О. Куайном, комбинируются оба упомянутых подхода: язык NF — тот же, что в ZF, а аксиомы свёртывания должны получаться из аксиом теории типов удалением индексов при переменных.

Для различных систем А. т. м. и отдельных их аксиом рассматривался вопрос об их (относительной) непротиворечивости. В 1940 К. Гёдель доказал относительную непротиворечивость аксиомы выбора и континуум-гипотезы (см. Континуума проблема) для описанной им системы a и ZF; в дальнейшем этот результат был перенесён на теорию типов (самую слабую из перечисленных систем), а затем и на NF (в соответствующей форме). В 1963 американский математик П. Дж. Коэн доказал для ZF (а тем самым и для a ) относительную непротиворечивость отрицания континуум-гипотезы, в т. ч. и в случае, если к ZF присоединена аксиома выбора. Он же доказал, что к ZF можно присоединить без возникновения противоречия аксиому о том, что континуум не может быть вполне упорядочен (из этой аксиомы сразу следует отрицание аксиомы выбора).

Поделиться:
Популярные книги

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Законы Рода. Том 10

Андрей Мельник
10. Граф Берестьев
Фантастика:
юмористическая фантастика
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 10

Бракованная невеста. Академия драконов

Милославская Анастасия
Фантастика:
фэнтези
сказочная фантастика
5.00
рейтинг книги
Бракованная невеста. Академия драконов

Работа для героев

Калинин Михаил Алексеевич
567. Магия фэнтези
Фантастика:
фэнтези
героическая фантастика
6.90
рейтинг книги
Работа для героев

Законы Рода. Том 11

Андрей Мельник
11. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 11

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Черт из табакерки

Донцова Дарья
1. Виола Тараканова. В мире преступных страстей
Детективы:
иронические детективы
8.37
рейтинг книги
Черт из табакерки

Игра престолов

Мартин Джордж Р.Р.
1. Песнь Льда и Огня
Фантастика:
фэнтези
9.48
рейтинг книги
Игра престолов

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Неправильный боец РККА Забабашкин 3

Арх Максим
3. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный боец РККА Забабашкин 3

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды