Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (БО)
Шрифт:

Соч.: Wissenschaftliche Abhandlungen, Bd 1—3, Lpz., 1909; Popul"are Schriften, 2. Aufl., Lpz., 1919; в рус. пер. — Очерки методологии физики, М., 1929; Лекции по теории газов, М., 1956.

Лит.: Фламм Л., Памяти Людвига Больцмана, «Успехи физических наук», 1957, т. 61, в. 1.

О. В. Кузнецова.

Л. Больцман.

Больцмана постоянная

Бо'льцмана постоя'нная, одна из основных физических постоянных , равная

отношению универсальной газовой постоянной R к числу Авогадро NA . (числу молекул в 1 моль или 1 кмоль вещества): k = R/NA . Названа по имени Л. Больцмана . Б. п. входит в ряд важнейших соотношений физики: в уравнение состояния идеального газа, в выражение для средней энергии теплового движения частиц (и собственно теплоёмкости ), связывает энтропию физической системы с её термодинамической вероятностью (см. Вероятность термодинамическая ).

Б. п. k = (1,38054±0,00018)'10– 23дж /К; это значение соответствует наиболее точным на 1964 данным о постоянных R и nA. Непосредственно значение Б. п. можно определить, например, опытной проверкой законов излучения.

Больцмана принцип

Бо'льцмана при'нцип устанавливает связь между энтропией S физической системы и термодинамической вероятностью W её состояния: S = k lnW, где k — Больцмана постоянная . Предложен Л. Больцманом в 1872. Подробнее см. Энтропия .

Больцмана распределение

Бо'льцмана распределе'ние, см. Больцмана статистика .

Больцмана статистика

Бо'льцмана стати'стика, физическая статистика для систем из большого числа невзаимодействующих частиц. Строго Б.с. подчиняются атомные и молекулярные идеальные газы, т. е. газы, у которых потенциальная энергия взаимодействия молекул считается равной нулю. Реально к таким системам относятся разрежённые газы, молекулы которых слабо взаимодействуют друг с другом.

При большом числе частиц в системе невозможно детально описать поведение каждой частицы. Однако общие черты поведения системы в целом являются усреднённым отражением движения отдельных частиц. Частицы распределяются по возможным для них состояниям — их координаты r и импульсы р принимают определённые значения. Математически это описывается функцией распределения, характеризующей вероятность пребывания частицы в данном состоянии.

Для идеального газа молекул, находящихся в поле внешних сил, функция распределения Больцмана имеет вид:

где р2/2m — кинетическая энергия молекулы массы m, U (r ) её потенциальная энергия во внешнем поле, k — Больцмана постоянная , Т — абсолютная температура газа; постоянная А определяется

из условия, что суммарное число частиц, распределённых по всем возможным состояниям, равно полному числу частиц в системе (условие нормировки). Так как величина kT характеризует среднюю энергию теплового движения молекулы, то в Б. с. распределение частиц по состояниям определяется отношением полной энергии частицы (кинетическая плюс потенциальная) к энергии её теплового движения.

Функция распределения (1) содержит два сомножителя: ехр (-р2/ 2mкТ ) и exp (-U (r )/kT ). Первый из них определяет распределение молекул по импульсам (или скоростям), т. е. является Максвелла распределением , а второй — распределение по координатам в поле внешних сил. Поэтому иногда только вторую зависимость называют распределением Больцмана, а формулу (1) называют распределением Максвелла — Больцмана.

С помощью функции распределения Больцмана легко получить формулу изменения концентрации молекул воздуха (независимо от их импульса) с изменением высоты над земной поверхностью, а следовательно, и барометрическую формулу , определяющую зависимость давления воздуха от высоты.

В квантовой статистике вместо функции распределения рассматривается среднее число частиц

, находящихся в данном квантовом состоянии с энергией Ei, и распределение Больцмана выглядит следующим образом:

Постоянная А находится из условия

где N — общее число частиц в системе, и равна А = (N/V )(h2 /mkT )3/2 (V — объём газа, h — Планка постоянная ). Распределение (2) является предельным случаем квантовых статистик Бозе — Эйнштейна и Ферми — Дирака, когда можно пренебречь квантовомеханическими эффектами, связанными с взаимным влиянием тождественных частиц (см. Тождественности принцип ). Оно справедливо для систем, у которых все числа

 малы по сравнению с 1; это означает, что частицы проводят почти всё время в сильно различающихся состояниях и потому специфическое влияние их друг на друга не проявляется.

Квантовая Б. с. справедлива при малых плотностях газа N/V и высоких температурах (при данной массе частиц). Фактически Б. с. применима для всех разреженных молекулярных газов, т.к. масса молекул велика и квантовое воздействие тождественных частиц друг на друга должно было бы проявиться лишь при столь высоких плотностях и низких температурах, которые соответствуют твёрдому (для гелия — жидкому) состоянию вещества (а в этом случае Б. с. вообще неприменима, т.к. взаимодействие молекул велико). К электронному газу в металлах и газу световых квантов — фотонов — Б. с. неприменима (см. Статистическая физика ).

Поделиться:
Популярные книги

Циклопы. Тетралогия

Обухова Оксана Николаевна
Фантастика:
детективная фантастика
6.40
рейтинг книги
Циклопы. Тетралогия

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Единственная для невольника

Новикова Татьяна О.
Любовные романы:
любовно-фантастические романы
5.67
рейтинг книги
Единственная для невольника

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Курсант: Назад в СССР 4

Дамиров Рафаэль
4. Курсант
Фантастика:
попаданцы
альтернативная история
7.76
рейтинг книги
Курсант: Назад в СССР 4

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат

Леди для короля. Оборотная сторона короны

Воронцова Александра
3. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Леди для короля. Оборотная сторона короны

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Весь цикл «Десантник на престоле». Шесть книг

Ланцов Михаил Алексеевич
Десантник на престоле
Фантастика:
альтернативная история
8.38
рейтинг книги
Весь цикл «Десантник на престоле». Шесть книг

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка