Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ДИ)
Шрифт:

Е. М. Добрышман.

Динамическая нагрузка

Динами'ческая нагру'зка, нагрузка, характеризующаяся быстрым изменением во времени её значения, направления или точки приложения и вызывающая в элементах конструкции значительные силы инерции.

Динамическая ошибка

Динами'ческая оши'бка, динамическая погрешность, динамическое отклонение, разность между требуемым и действительным значениями регулируемой величины, возникающая и измеряющаяся в процессе регулирования; см. Регулирование автоматическое.

Динамическая психология

Динами'ческая психоло'гия,

совокупное обозначение различных течений в современной психологии, для которых характерен подход к психике как к целостному внутреннему процессу. Термин впервые был применён в 1918 американским психологом Р. Вудвортсом для обозначения нового направления в психологии, возникшего под влиянием волюнтаристической концепции У. Джемса. Сторонники этого направления (Р. Вудвортс, Т. Мур, Дж. Мак-Карди) стали рассматривать реакции организма на внешний стимул не как изолированный акт типа механического толчка, а как сложный процесс, проистекающий в конечном счёте из внутренней активности организма и определяющийся прежде всего его потребностью, которая делает организм чувствительным к одним раздражителям и безразличным к другим. Сторонники Д. п. разработали динамический подход к ряду явлений, трактовавшихся прежде как статические, например зависимость восприятия объекта от прошлого опыта и т. д.

В дальнейшем термин «Д. п.» стал употребляться в широком смысле для обозначения разнообразных психологических концепций, которые, в противоположность статическому подходу к психике (выразившемуся, например, в ассоционизме и др. классических интеллектуалистских теориях психики, изучающих её в аспекте ощущений, восприятий, представлений), уделяют преимущественное внимание динамическим аспектам психики — побудительным мотивам, влечениям, интересам, конфликтам личности и т. д. Поведение человека трактуется при этом как результат действия внутрипсихических сил, стремлений и т. д., которые понимаются как бессознательные влечения (психоанализ и др. направления глубинной психологии), инстинкты (К. Лоренц), целевые действия (У. Мак-Дугалл), силы поля (К. Левин) и др. К Д. п. относят также направления в психологии личности, которые трактуют личность как динамическую саморазвивающуюся систему (Г. Олпорт, Г. Мёрфи и др.), отрицая при этом определяющую роль социально-исторических обстоятельств в её формировании.

М. Г. Ярошевский.

Динамическая система

Динами'ческая систе'ма (в классическом смысле), механическая система с конечным числом степеней свободы, например система конечного числа материальных точек или твёрдых тел, движущаяся по законам классической динамики. Состояние такой системы обычно характеризуется её расположением (конфигурацией) и скоростью изменения последнего, а закон движения указывает, с какой скоростью изменяется состояние системы.

В простейших случаях состояние можно охарактеризовать посредством величин w1, ..., wm, которые могут принимать произвольные (вещественные) значения, причём двум различным наборам величин w1, ..., wm и w'1, ..., w'm отвечают различные состояния, и обратно, а близость всех wi к wi' означает близость соответствующих состояний системы. Закон движения тогда записывается в виде системы обыкновенных дифференциальных уравнений:

wi = fi(w1, ..., wm), i = 1, ..., m. (1)

Рассматривая значения w1, ..., wm

как координаты точки w в m– мерном пространстве, можно геометрически представить соответствующее состояние Д. с. посредством точки w. Эту точку называют фазовой (иногда также изображающей, или представляющей) точкой, а пространство — фазовым пространством системы (прилагательное «фазовый» связано с тем, что в прошлом состояния системы нередко называются её фазами). Изменение состояния со временем изображается как движение фазовой точки по некоторой линии (так называемой фазовой траектории; часто её называют просто траекторией) в фазовом пространстве. В последнем определено векторное поле, сопоставляющее каждой точке w выходящий из неё вектор f(w) с компонентами

(f1(w1, ..., wm), ..., fm(w1, ..., wm))

Дифференциальные уравнения (1), которые с помощью введённых обозначений можно сокращённо записать в виде

w = f(w), (2)

означают, что в каждый момент времени векторная скорость движения фазовой точки равна вектору f(w), исходящему из той точки w фазового пространства, где в данный момент находится движущаяся фазовая точка. В этом состоит так называемая кинематическая интерпретация системы дифференциальных уравнений (1).

Например, состояние частицы без внутренних степеней свободы (материальной точки), движущейся в потенциальном поле с потенциалом U(x1, x2, x3), характеризуется её положением x = (x1, x2, x3) и скоростью x; вместо скорости можно использовать импульс p = mx, где mмасса частицы. Закон движения частицы можно записать в виде

Формулы (3) представляют собой сокращённую запись системы шести обыкновенных дифференциальных уравнений 1-го порядка. Фазовым пространством здесь служит 6-мерное евклидово пространство, 6 компонент вектора фазовой скорости суть компоненты обычной скорости и силы, а проекция фазовой траектории на пространство положений частицы (параллельно пространству импульсов) есть траектория частицы в обычном смысле слова.

Термин «Д. с.» применяется и в более широком смысле, означая произвольную физическую систему (например, систему автоматического регулирования, радиотехническую систему), описываемую дифференциальными уравнениями вида (1) или (2), и даже просто систему дифференциальных уравнений такого вида, безотносительно к её происхождению. См. также ст. Эргодическая теория.

Лит.: Немыцкий В. В. и Степанов В. В., Качественная теория дифференциальных уравнений, 2 изд., М. — Л., 1949; Коддингтон Э. А., Левинсон Н., Теория обыкновенных дифференциальных уравнений, пер. с англ., М., 1958, гл. 13—17; Халмош П. P., Лекции по эргодической теории, пер. с англ., М., 1959; Лефшец С., Геометрическая теория дифференциальных уравнений, пер. с англ., М., 1961.

Д. В. Аносов.

Динамические межотраслевые модели

Поделиться:
Популярные книги

Кодекс Охотника. Книга VI

Винокуров Юрий
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VI

Пышка и Герцог

Ордина Ирина
Фантастика:
юмористическое фэнтези
историческое фэнтези
фэнтези
5.00
рейтинг книги
Пышка и Герцог

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Гридень. Начало

Гуров Валерий Александрович
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Гридень. Начало

Пушкарь. Пенталогия

Корчевский Юрий Григорьевич
Фантастика:
альтернативная история
8.11
рейтинг книги
Пушкарь. Пенталогия

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

An ordinary sex life

Астердис
Любовные романы:
современные любовные романы
love action
5.00
рейтинг книги
An ordinary sex life

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды

Жандарм

Семин Никита
1. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
4.11
рейтинг книги
Жандарм

Неправильный солдат Забабашкин

Арх Максим
1. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.62
рейтинг книги
Неправильный солдат Забабашкин

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога