Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ЭЛ)
Шрифт:

Электромагнитные взаимодействия характеризуются как взаимодействия, в основе которых лежит связь с электромагнитным полем. Процессы, обусловленные ими, менее интенсивны, чем процессы сильных взаимодействий, а порождаемая ими связь Э. ч. заметно слабее. Электромагнитные взаимодействия, в частности, ответственны за связь атомных электронов с ядрами и связь атомов в молекулах.

Слабые взаимодействия, как показывает само название, вызывают очень медленно протекающие процессы с Э. ч. Иллюстрацией их малой интенсивности может служить тот факт, что нейтрино, обладающие только слабыми взаимодействиями, беспрепятственно пронизывают, например, толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады т. н. квазистабильных Э. ч. Времена жизни этих частиц лежат в диапазоне 10– 8 10– 10сек, тогда как типичные времена для сильных взаимодействий Э. ч. составляют 10– 23 —10– 24 сек.

Гравитационные взаимодействия, хорошо известные по своим макроскопическим проявлениям, в случае Э. ч. на характерных расстояниях ~10– 13 см дают чрезвычайно малые эффекты из-за малости масс Э. ч.

Силу различных классов взаимодействий можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами констант соответствующих взаимодействий. Для сильных, электромагнитных, слабых и гравитационных взаимодействий протонов при средней энергии процесса ~1 Гэв эти параметры соотносятся как 1:10– 2 : l0– 10 :10– 38 . Необходимость указания средней энергии процесса связана с тем, что для слабых взаимодействий безразмерный параметр зависит от энергии. Кроме того, сами интенсивности различных процессов по-разному зависят от энергии. Это приводит к тому, что относительная роль различных взаимодействий, вообще говоря, меняется с ростом энергии взаимодействующих частиц, так что разделение взаимодействий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях. Разные классы взаимодействий имеют, однако, и другую специфику, связанную с различными свойствами их симметрии (см. Симметрия в физике), которая способствует их разделению и при более высоких энергиях. Сохранится ли такое деление взаимодействий на классы в пределе самых больших энергий, пока остаётся неясным.

В зависимости от участия в тех или иных видах взаимодействий все изученные Э. ч., за исключением фотона, разбиваются на две основные группы: адроны (от греческого hadros — большой, сильный) и лептоны (от греческого leptos — мелкий, тонкий, лёгкий). Адроны характеризуются прежде всего тем, что они обладают сильными взаимодействиями, наряду с электромагнитными и слабыми, тогда как лептоны участвуют только в электромагнитных и слабых взаимодействиях. (Наличие общих для той и другой группы гравитационных взаимодействий подразумевается.) Массы адронов по порядку величины близки к массе протона (тр ); минимальную массу среди адронов имеет p-мезон: тp »м 1/7xтр. Массы лептонов, известных до 1975—76, были невелики (

0,1 mp ), однако новейшие данные, видимо, указывают на возможность существования тяжёлых лептонов с такими же массами, как у адронов. Первыми исследованными представителями адронов были протон и нейтрон, лептонов — электрон. Фотон, обладающий только электромагнитными взаимодействиями, не может быть отнесён ни к адронам, ни к лептонам и должен быть выделен в отд. группу. По развиваемым в 70-х гг. представлениям фотон (частица с нулевой массой покоя) входит в одну группу с очень массивными частицами — т. н. промежуточными векторными бозонами, ответственными за слабые взаимодействия и пока на опыте не наблюдавшимися (см. раздел Элементарные частицы и квантовая теория поля).

Характеристики элементарных частиц. Каждая Э. ч., наряду со спецификой присущих ей взаимодействий, описывается набором дискретных значений определённых физических величин, или своими характеристиками. В ряде случаев эти дискретные значения выражаются через целые или дробные числа и некоторый общий множитель — единицу измерения; об этих числах говорят как о квантовых числах Э. ч. и задают только их, опуская единицы измерения.

Общими характеристиками всех Э. ч. являются масса (m ), время жизни (t), спин (J ) и электрический заряд (Q ). Пока нет достаточного понимания того, по какому закону распределены массы Э. ч. и существует ли для них какая-то единица измерения.

В зависимости от времени жизни Э. ч. делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными, в пределах точности современных измерений, являются электрон (t > 5x1021 лет), протон (t > 2x1030 лет), фотон и нейтрино. К квазистабильным относят частицы, распадающиеся за счёт электромагнитных и слабых взаимодействий. Их времена жизни > 10– 20 сек (для свободного нейтрона даже ~ 1000 сек ). Резонансами называются Э. ч., распадающиеся за счёт сильных взаимодействий. Их характерные времена жизни 10– 23 —10– 24сек. В некоторых случаях распад тяжёлых резонансов (с массой ³ 3 Гэв ) за счёт сильных взаимодействий оказывается подавленным и время жизни увеличивается до значений — ~10– 20 сек.

Спин Э. ч. является целым или полуцелым кратным от величины

.
В этих единицах спин p и К-мезонов равен 0, у протона, нейтрона и электрона J= 1/2, у фотона J = 1. Существуют частицы и с более высоким спином. Величина спина Э. ч. определяет поведение ансамбля одинаковых (тождественных) частиц, или их статистику (В. Паули , 1940). Частицы полуцелого спина подчиняются Ферми — Дирака статистике (отсюда название фермионы ), которая требует антисимметрии волновой функции системы относительно перестановки пары частиц (или нечётного числа пар) и, следовательно, «запрещает» двум частицам полуцелого спина находиться в одинаковом состоянии (Паули принцип ). Частицы целого спина подчиняются Бозе — Эйнштейна статистике (отсюда название бозоны ), которая требует симметрии волновой функции относительно перестановок частиц и допускает нахождение любого числа частиц в одном и том же состоянии. Статистические свойства Э. ч. оказываются существенными в тех случаях, когда при рождении или распаде образуется несколько одинаковых частиц. Статистика Ферми — Дирака играет также исключительно важную роль в структуре ядер и определяет закономерности заполнения электронами атомных оболочек, лежащие в основе периодической системы элементов Д. И. Менделеева .

Электрические заряды изученных Э. ч. являются целыми кратными от величины е » 1,6x10– 19к, называются элементарным электрическим зарядом. У известных Э. ч. Q = , ±1, ±2.

Помимо указанных величин Э. ч. дополнительно характеризуются ещё рядом квантовых чисел, называются внутренними. Лептоны несут специфический лептонный заряд L двух типов: электронный (Le ) и мюонный (Lm ); Le = +1 для электрона и электронного нейтрино, Lm= +1 для отрицательного мюона и мюонного нейтрино. Тяжёлый лептон t; и связанное с ним нейтрино, по-видимому, являются носителями нового типа лептонного заряда Lt .

Для адронов L = 0, и это ещё одно проявление их отличия от лептонов. В свою очередь, значительные части адронов следует приписать особый барионный заряд В (|Е| = 1). Адроны с В = +1 образуют подгруппу барионов (сюда входят протон, нейтрон, гипероны, барионные резонансы), а адроны с В = 0 — подгруппу мезонов (p и К-мезоны, бозонные резонансы). Название подгрупп адронов происходит от греческих слов bar'ys — тяжёлый и m'esos — средний, что на начальном этапе исследований Э. ч. отражало сравнительные величины масс известных тогда барионов и мезонов. Более поздние данные показали, что массы барионов и мезонов сопоставимы. Для лептонов В = 0. Для фотона В = 0 и L = 0.

Барионы и мезоны подразделяются на уже упоминавшиеся совокупности: обычных (нестранных) частиц (протон, нейтрон, p-мезоны), странных частиц (гипероны, К-мезоны) и очарованных частиц. Этому разделению отвечает наличие у адронов особых квантовых чисел: странности S и очарования (английское charm) Ch с допустимыми значениями: 151 = 0, 1, 2, 3 и |Ch | = 0, 1, 2, 3. Для обычных частиц S = 0 и Ch = 0, для странных частиц |S | ¹ 0, Ch = 0, для очарованных частиц |Ch | ¹ 0, а |S | = 0, 1, 2. Вместо странности часто используется квантовое число гиперзаряд Y = S + В, имеющее, по-видимому, более фундаментальное значение.

Уже первые исследования с обычными адронами выявили наличие среди них семейств частиц, близких по массе, с очень сходными свойствами по отношению к сильным взаимодействиям, но с различными значениями электрического заряда. Протон и нейтрон (нуклоны) были первым примером такого семейства. Позднее аналогичные семейства были обнаружены среди странных и (в 1976) среди очарованных адронов. Общность свойств частиц, входящих в такие семейства, является отражением существования у них одинакового значения специального квантового числа — изотопического спина I, принимающего, как и обычный спин, целые и полуцелые значения. Сами семейства обычно называются изотопическими мультиплетами. Число частиц в мультиплете (п ) связано с I соотношением: n = 2I + 1. Частицы одного изотопического мультиплета отличаются друг от друга значением «проекции» изотопического спина I3 , и соответствующие значения Q даются выражением:

Поделиться:
Популярные книги

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Идеальный мир для Лекаря 20

Сапфир Олег
20. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 20

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Пять попыток вспомнить правду

Муратова Ульяна
2. Проклятые луной
Фантастика:
фэнтези
эпическая фантастика
5.00
рейтинг книги
Пять попыток вспомнить правду

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Ваше Сиятельство 11

Моури Эрли
11. Ваше Сиятельство
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Ваше Сиятельство 11

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Черный дембель. Часть 4

Федин Андрей Анатольевич
4. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 4