Большая Советская Энциклопедия (ФО)
Шрифт:
Ф. обычно служат приёмниками излучения или приёмниками света (полупроводниковые Ф. в этом случае нередко отождествляют с фотодиодами ); полупроводниковые Ф. используют также для прямого преобразования энергии солнечного излучения в электрическую энергию – в солнечных батареях , фотоэлектрических генераторах .
Основные параметры и характеристики Ф. 1) Интегральная чувствительность (ИЧ) – отношение фототока к вызывающему его световому потоку при номинальном анодном напряжении (у вакуумных Ф.) или при короткозамкнутых выводах (у полупроводниковых Ф.). Для определения ИЧ используют, как правило, эталонные источники света (например, лампу накаливания с воспроизводимым значением цветовой температуры нити, обычно равным 2840 К). Так, у вакуумных Ф. (с сурьмяно-цезиевым катодом) ИЧ составляет около 150 мка/лм, у селеновых – 600–700 мка/лм, у германиевых – 3x104мка/лм. 2) Спектральная чувствительность – величина, определяющая диапазон значений длин волн оптического излучения,
Ф. используют в автоматике и телемеханике, фотометрии, измерительной технике, метрологии, при оптических, астрофизических, космических исследованиях, в кино- и фототехнике, факсимильной связи и т.д.; перспективно использование полупроводниковых Ф. в системах энергоснабжения космических аппаратов, морской и речной навигационной аппаратуре, устройствах питания радиостанций и др.
Лит.: Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Фотоэлектронные приборы, М., 1965; Васильев А. М., Ландсман А. П., Полупроводниковые фотопреобразователи М 1971.
М. М. Колтун.
Схематическое изображение фотоэлемента с внешним (а) и внутренним (б) фотоэффектом; К — фотокатод; А — анод; Ф — световой поток; n и p — области полупроводника с донорной и акцепторной примесями; Е — источник постоянного тока, служащий для создания в пространстве между К и А электрического поля, ускоряющего фотоэлектроны; Rн — нагрузка; пунктирной линией обозначен р — n-переход.
Фотоэффект
Фотоэффе'кт, испускание электронов веществом под действием электромагнитного излучения (фотонов ). Ф. был открыт в 1887 Г. Герцем . Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в цепи, содержащей металлические электроды и источник напряжения, существенную роль играет освещение отрицательного электрода и что сила фототока пропорциональна интенсивности света. Ф. Ленард (1899) доказал, что при освещении металлов из них испускаются электроны. Первое теоретическое объяснение законов Ф. дал А. Эйнштейн (1905). В дальнейшем теория Ф. была развита в наиболее последовательном виде И. Е. Таммом и С. П. Шубиным (1931). Большой вклад в экспериментальное исследование Ф. внесли работы А. Ф. Иоффе (1907), П. И. Лукирского и С. С. Прилежаева (1928).
Ф. – квантовое явление, его открытие и исследование сыграли важную роль в экспериментальном обосновании квантовой теории: только на её основе оказалось возможным объяснение закономерностей Ф. Свободный электрон не может поглотить фотон, т.к. при этом не могут быть одновременно соблюдены законы сохранения энергии и импульса. Ф. из атома, молекулы или конденсированной среды возможен из-за связи электрона с окружением. Эта связь характеризуется в атоме энергией ионизации , в конденсированной среде – работой выхода . Закон сохранения энергии при Ф. выражается соотношением Эйнштейна:
Ф. может наблюдаться в газах на отдельных атомах и молекулах (фотоионизация). Первичным актом здесь является поглощение фотона атомом и ионизация с испусканием электрона. С высокой степенью точности можно считать, что вся энергия фотона за вычетом энергии ионизации передаётся испускаемому электрону. В конденсированных средах механизм поглощения фотонов зависит от их энергии. При
При энергиях фотонов
Ядерным Ф. называется поглощение g-кванта атомным ядром, сопровождающееся его перестройкой (см. Фотоядерные реакции ).
Ф. широко используется в исследованиях строения вещества – атомов, атомных ядер, твёрдых тел (см. Фотоэлектрические явления ), а также в фотоэлектронных приборах.
Лит.: Hertz Н., Uber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung, «Annalen der Physik und Chemie», 1887, Bd 31; Столетов А. Г., Избр. соч., М. – Л., 1950; Эйнштейн А., Собр. научн. тр., т. 3, М., 1966; Tamm Ig., Scliubin S., Zur Theorie des Photoeffektes an Metalien, «Zeitschrift fur Physik», 1931, Bd 68; Лукирский П. И., О фотоэффекте, Л. – М., 1933; Стародубцев С. В., Романов А. М., Взаимодействие гамма-излучения с веществом, ч. 1, Таш., 1964.
Т. М. Лифшиц.
Фотоэффект внешний
Фотоэффе'кт вне'шний, то же, что фотоэлектронная эмиссия .
Фотоэффект внутренний
Фотоэффе'кт вну'тренний, перераспределение электронов по энергетическим состояниям в конденсированной среде, происходящее при поглощении электромагнитного излучения. В неметаллических телах (полупроводниках и диэлектриках ) Ф. в. проявляется в изменении электропроводности (см. Фотопроводимость ), диэлектрической проницаемости среды (см. Фотодиэлектрический эффект ) или в возникновении на ее границах электродвижущей силы (см. Фотоэдс ). В металлах из-за их высокой электропроводности Ф. в. неощутим. Ф. в. используется для изучения электрических свойств веществ и неравновесных электронных процессов в них. Исследование Ф. в. позволяет определять ширину запрещенной зоны веществ, времена жизни электронов проводимости и дырок, механизмы и параметры процессов рекомбинации неравновесных носителей заряда, свойства примесей и др. Ф. в. используется в фотоэлектронных приборах (см. Фоторезистор , Фотоэлемент , Фотодиод , Фототранзистор ) и в устройствах для преобразования солнечной энергии в электрическую (см. Солнечная батарея ).
Лит.: Рывкин с. М., Фотоэлектрические явления в полупроводниках, М., 1963; Бьюб Р., Фотопроводимость твердых тел, пер. с англ., М., 1962; Фотопроводимость. Сб. ст., пер. с англ., М., 1967.
Т. М. Лифшиц.
Фотоядерные реакции
Фотоя'дерные реа'кции, ядерный фотоэффект, поглощение атомными ядрами g-квантов с испусканием протонов р, нейтронов n или более сложных частиц. Наиболее изучены Ф. р. (g, р) и (g, n), известны также реакции (g, d), (g, pn), (g, d) и др. Для вырывания из атомного ядра протона или нейтрона (нуклонов) энергия g-кванта Eg должна превышать энергию связи нуклона в ядре. Сумма эффективных поперечных сечений всевозможных Ф. р. называется сечением поглощения g-кванта ядром. Для всех ядер (за исключением очень лёгких) сечение sg при малых и больших энергиях g-кванта мало, а в середине имеется высокий широкий максимум, называемый гигантским резонансом (рис. 1 ).
Блуждающие огни
1. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
рейтинг книги
Третий
Фантастика:
космическая фантастика
попаданцы
рейтинг книги
Кир Булычев. Собрание сочинений в 18 томах. Т.3
Собрания сочинений
Фантастика:
научная фантастика
рейтинг книги
Полное собрание сочинений в одной книге
Проза:
классическая проза
русская классическая проза
советская классическая проза
рейтинг книги
Неудержимый. Книга XV
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
На границе империй. Том 7. Часть 4
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
рейтинг книги
Попаданка в академии драконов 2
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
рейтинг книги
Я все еще князь. Книга XXI
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Предназначение
1. Радогор
Фантастика:
фэнтези
рейтинг книги
