не имеет собственных значений. Поэтому определение спектра было пересмотрено, обобщено и выглядит сейчас следующим образом.
Пусть Х — банахово пространство, А ^I
— многочлен, то f (A ) =
(степень оператора понимается как последовательное его применение). Однако если f (z ) — аналитическая функция, то так прямо понимать f (A ) уже не всегда возможно; в этом случае f (A ) определяется следующей формулой, если f (z ) аналитична в окрестности SpA, а Г — контур, охватывающий SpA
и лежащий в области аналитичности f (z ):
. (6)
При этом алгебраические операции над функциями переходят в аналогичные операции над операторами [т. е. отображение f (z ) ® f (A ) — гомоморфизм]. Эти конструкции не дают возможности выяснить, например, вопросы полноты собственных и присоединённых векторов для общих операторов, однако для самосопряжённых операторов, представляющих основной интерес, например, для квантовой механики, подобная теория полностью разработана.
Пусть Н — гильбертово пространство. Ограниченный оператор А : Н ® Н называется самосопряжённым, если (Ax , у ) = (x , Ау ) (в случае неограниченного А определение более сложно). Если Нn– мерно, то в нём существует ортонормированный базис собственных векторов самосопряжённого оператора А ; другими словами, имеют место разложения:
,
, (7)
где P (lj ) — оператор проектирования (проектор) на подпространство, натянутое на все собственные векторы оператора А , отвечающие одному и тому же собственному значению lj .
Оказывается, что эти формулы могут быть обобщены на произвольный самосопряжённый оператор из Н , только сами проекторы P (lj ) могут не существовать, поскольку могут отсутствовать и собственные векторы [таков, например, оператор Т в (5)]. В формулах (7) суммы заменяются теперь интегралами Стилтьеса по неубывающей операторнозначной функции Е (l) [которая в конечномерном случае равна
], называется разложением единицы, или спектральной (проекторной) мерой, точки роста которой совпадают со спектром Sp А . Если привлечь обобщённые функции, то формулы типа (7) сохраняются. Именно, если имеется тройка Ф' 'E Н 'E Ф , где Ф, например, ядерно, причём А переводит Ф в Фc и непрерывно, то соотношения (7) имеют место, только суммы переходят в интегралы по некоторой скалярной мере, а Е (l) теперь «проектирует» Ф в Фc, давая векторы из Фc, которые будут собственными в обобщённом смысле для А с собственным значением l. Аналогичные результаты справедливы для т. н. нормальных операторов (т. е. коммутирующих со своими сопряжёнными). Например, они верны для унитарных операторовU — таких ограниченных операторов, которые отображают всё Н на всё Н и сохраняют при этом скалярное произведение. Для них спектр SpU расположен на окружности |z | = 1, вдоль которой и производится интегрирование в аналогах формул (6). См. также Спектральный анализ линейных операторов.
5. Нелинейный функциональный анализ. Одновременно с развитием и углублением понятия пространства шло развитие и обобщение понятия функции. В конечном счёте оказалось необходимым рассматривать отображения (не обязательно линейные) одного пространства в другое (часто — в исходное). Одной из центральных задач нелинейного Ф. а. является изучение таких отображений. Как и в линейном случае, отображение пространства в
) называется функционалом. Для нелинейных отображений (в частности, нелинейных функционалов) можно различными способами определить дифференциал, производную по направлению и т.д. аналогично соответствующим понятиям классического анализа. Выделение из отображения квадратичного и т.д. членов приводит к формуле, аналогичной формуле Тейлора.
Важной задачей нелинейного Ф. а. является задача отыскания неподвижных точек отображения (точка x называется неподвижной для отображения F , если Fx = x ). К отысканию неподвижных точек сводятся многие задачи о разрешимости операторных уравнений, а также задачи отыскания собственных значений и собственных векторов нелинейных операторов. При решении уравнений с нелинейными операторами, содержащими параметр, возникает существенное для нелинейного Ф. а. явление — т. н. точки ветвления (решений).
При исследовании неподвижных точек и точек ветвления используются топологические методы: обобщения на бесконечномерные пространства теоремы Брауэра о существовании неподвижных точек отображений конечномерных пространств, степени отображений и т.п. Топологические методы Ф. а. развивались польским математиком Ю. Шаудером, французским математиком Ж. Лере, советскими математиками М. А. Красносельским, Л. А. Люстерником и др.
6. Банаховы алгебры. Теория представлений. На ранних этапах
развития Ф. а. изучались задачи, для постановки и решения которых необходимы были лишь линейные операции над элементами пространства. Исключение составляют, пожалуй, только теория колец операторов (факторов) (Дж. Нейман, 1929) и теория абсолютно сходящихся рядов Фурье (Н. Винер , 1936). В конце 30-x гг. в работах японского математика М. Нагумо, советских математиков И. М, Гельфанда, Г. Е. Шилова, М. А. Наймарка и др. стала развиваться теория т. н. нормированных колец (современное название — банаховы алгебры), в которой, кроме операций линейного пространства, аксиоматизируется операция умножения (причём ||xy || lb ||x || ||y ||). Типичными представителями банаховых алгебр являются кольца ограниченных операторов, действующих в банаховом пространстве Х (умножение в нём — последовательное применение операторов — необходимо с учётом порядка), различного рода функциональные пространства, например C (T ) с обычным умножением, L1 (
) со свёрткой в качестве произведения, и широкое обобщение их — класс т. н. групповых алгебр (топологические группы G ), состоящих из комплекснозначных функций или мер, определённых на G со свёрткой (в различных, не обязательно эквивалентных вариантах) в качестве умножения.
Пусть
— коммутативная (т. е. xy = ух для любых x , у ^I
на М , причём сумме x + y и произведению xy соответствуют сумма и произведение функций. Другими словами, существует гомоморфизм
борелевских подмножеств G , инвариантная справа: для любых В ^I
, где c(h ) — характер группы G : непрерывная функция на G такая, что |c(h )| = 1 и c(h1 h2 ) = c(h1 )c(h2 ), d c — мера Хаара на группе характеров
, а
,
— обобщённое преобразование Фурье функций f (g ) и k (g ), которое продолжается до изоморфизма L2 (G , dg ) в L2 (
, dc). Для некоммутативных групп ситуация во многом усложняется. Если G компактна, то представление группы операторов сдвига (или, короче, группы сдвигов) удаётся хорошо описать; в этом случае L2 (G , dg ) распадается в прямую сумму конечномерных инвариантных относительно сдвигов подпространств. Если G некомпактна, то также получается разложение L2 (G , dg ) на более простые инвариантные части, но уже не в прямую сумму, а в прямой интеграл.
Если G =
, то теория унитарных представлений может быть сведена к теории самосопряжённых операторов. Именно, однопараметрическая группа унитарных операторов Тl , l ^I
в гильбертовом пространстве Н допускает представление Тl = exp i lA , где А — самосопряжённый оператор (теорема Стоун а); оператор А называется инфинитезимальным оператором (генератором) группы {Т'l }. Этот результат находит важные применения в изучении преобразований фазового пространства классической механики. Эта связь, а также приложения в статистической физике лежат в основе обширной ветви Ф. а. — эргодической теории . Связь между однопараметрическими группами преобразований и их генераторами допускает значительные обобщения: операторы Tl не обязаны быть унитарными, могут действовать в банаховых и более общих пространствах и даже быть определёнными лишь для l ³ 0 (т. н. теория полугрупп операторов). Этот раздел Ф. а. имеет приложения в теории дифференциальных уравнений с частными производными и теории случайных (именно марковских) процессов.