Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ХА)
Шрифт:

Х. дифференциального уравнения 2-го порядка

(3)

были введены Г. Монжем (1784, 1795) как линии, вдоль которых удовлетворяется обыкновенное дифференциальное уравнение

. (4)

Если уравнение (3) принадлежит к гиперболическому типу, то получаются два семейства Х. с уравнениями x(x , y ) = C1 и h(х , у ) = C2 (C1 , C2

произвольные постоянные); взяв x и h за новые аргументы, можно привести уравнение (3) к виду

.

Для уравнения (3) параболического типа эти семейства совпадают; если выбрать аргумент h произвольно, то уравнение (3) приведется к виду

.

Уравнение (3) эллиптического типа не имеет вещественных Х.; если записать решение уравнения (4) в виде x ± i h = C , то уравнение (3) преобразуется к виду

.

Значения решения и вдоль Х. и значения

 и
 в какой-либо её точке полностью определяют значения этих производных вдоль всей линии [на этом основан т. н. метод Х. решения краевых задач для уравнения (3)]; для других линий такой связи нет. С другой стороны, значения u ,
 и
, заданные на линии, не являющейся Х., определяют значения решения вблизи этой линии; для Х. же это не так. Если два решения уравнения (3) совпадают по одну сторону от некоторой линии и различны по другую, то эта линия непременно является Х.

Если коэффициенты уравнения (3) зависят от u ,

 и
 (квазилинейный случай), то Х., определяемые из уравнения (4), будут разные для разных решений. Имеются определения Х. и для уравнений и систем уравнений с частными производными любого порядка.

Лит. см. при ст. Уравнения математической физики .

Характеристика (в технике)

Характери'стика в технике, взаимосвязь между зависимыми и независимыми переменными, определяющими состояние технического объекта (процесса, прибора, устройства, машины, системы), выраженная в виде текста, таблицы, математической формулы, графика и т.п. Например, зависимости тока от электрического напряжения на участке электрической цепи (см. Вольтамперная характеристика ), расхода топлива автомобилем от пройденного им пути и состояния дороги, громкости и качества звучания громкоговорителя от частоты, времени перемагничивания ферритового сердечника от величины намагничивающего поля.

Х. по методике определения подразделяют на детерминированные (статические, динамические) и статистические; по виду аналитические зависимости — на линейные и нелинейные; по назначению — на эксплуатационные, настроечные и т.д. Статической Х. называется зависимость между выходной и входной величинами технической системы в установившихся состояниях. Динамические Х. (частотные, импульсные и др.) отражают реакции изучаемой системы на какие-либо типовые возмущающие воздействия: например, частотная Х. отражает зависимость амплитуды и фазы периодического сигнала на выходе системы от амплитуды и фазы входного гармонического сигнала при изменении только его частоты; импульсная Х. — зависимость изменения во времени сигнала на выходе системы от воздействия входного единичного импульса. В наиболее полной форме динамическая Х. содержатся в динамической математической модели объекта, например в виде дифференциальных уравнений. Статистические Х. (оценки) применяют к объектам, поведение которых во времени меняется случайным образом. К статистическим Х. относятся, например, дисперсия, автокорреляционная функция, спектральная плотность и т.п.

Линейными называются все Х., которые могут быть с заданной точностью аппроксимированы выражением вида у = ax + b ,

где у — выходное воздействие, x — входное воздействие изучаемой системы, а и b — постоянные коэффициенты. Все остальные Х. — нелинейные; среди них выделяют линеаризуемые Х., которые по частям с известной точностью аппроксимируются указанным выше выражением (см. Линеаризация ).

А. В. Кочеров.

Характеристическая кривая

Характеристи'ческая кривая, одна из важнейших характеристик фотографического материала, выражающая зависимость (при оговорённых условиях экспонирования и проявления) между оптической плотностью полученного на материале почернения фотографического и десятичным логарифмом экспозиции (называемым также количеством освещения), вызвавшей это почернение. См. ст. Сенситометрия (рис. 1 ) и литература при ней.

Характеристическая функция

Характеристи'ческая фу'нкция в математике,

1) то же, что собственная функция .

2) Х. ф. множества А (в современной терминологии — индикатор А ) — функция f (x ), определённая на некотором множестве Е , содержащем множество А , и принимающая значение f (x ) = 1, если x принадлежит множеству А , и значение f (x ) = 0, если x не принадлежит ему. 3) В теории вероятностей Х. ф. fX (t ) случайной величины Х определяется как математическое ожидание величины eitX . Это определение для случайных величин, имеющих плотность вероятностиpX (x ), приводит к формуле

.

Например, для случайной величины, имеющей нормальное распределение с параметрами а и s, Х. ф. равна

.

Свойства Х. ф.: каждой случайной величине Х соответствует определённая Х. ф. fX (t ); распределение вероятностей для Х однозначно определяется по fX (t ); при сложении независимых случайных величин соответствующие Х. ф. перемножаются; при надлежащем определении понятия «близости» случайным величинам с близкими распределениями соответствуют Х. ф., мало отличающиеся друг от друга, и, обратно, близким Х. ф. соответствуют случайные величины с близкими распределениями. Указанные свойства лежат в основе применений Х. ф., в частности к выводу предельных теорем теории вероятностей. Впервые аппарат, по существу равнозначный Х. ф., был использован П. Лапласом (1812), но вся сила метода Х. ф. была показана А. М. Ляпуновым (1901), получившим с его помощью свою известную теорему.

Понятие Х. ф. может быть обобщено на конечные и бесконечные системы случайных величин (т. е. на случайные векторы и случайные процессы).

Теория Х. ф. имеет много общего с теорией Фурье интеграла .

Лит.: Гнеденко Б. В., Курс теории вероятностей, 5 изд., М., 1969; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей, 2 изд., М., 1973.

Характеристические спектры

Характеристи'ческие спе'ктры, линейчатые рентгеновские спектры, вызванные электронными переходами на внутренней оболочки (слои) атомов. Длины волн Х. с. лежат в интервале от 10– 2нм до 5x10 нм и, согласно Мозли закону , зависят от атомного номера элемента. Они не обнаруживают периодических закономерностей, присущих оптическим спектрам, что объясняется сходным строением внутренних электронных оболочек всех элементов.

Поделиться:
Популярные книги

Солнце мертвых

Атеев Алексей Григорьевич
Фантастика:
ужасы и мистика
9.31
рейтинг книги
Солнце мертвых

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Поцелуй Валькирии - 3. Раскрытие Тайн

Астромерия
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Поцелуй Валькирии - 3. Раскрытие Тайн

Том 11. Былое и думы. Часть 6-8

Герцен Александр Иванович
11. Собрание сочинений в тридцати томах
Проза:
русская классическая проза
5.00
рейтинг книги
Том 11. Былое и думы. Часть 6-8

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Возвращение Безумного Бога

Тесленок Кирилл Геннадьевич
1. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога

Жена неверного ректора Полицейской академии

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного ректора Полицейской академии

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

До захода солнца

Эшли Кристен
1. Трое
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
До захода солнца