Большая Советская Энциклопедия (ИМ)
Шрифт:
Амплитуды импульсов измеряются с помощью специальных ёмкостных, омических или смешанных делителей напряжения.
Импульсы сильных токов применяются: 1) для создания импульсных магнитных полей в термоядерных установках, ускорителях заряженных частиц, при ускорении плазмы, и металлических тел, при магнитно-импульсной обработке металлов, в быстродействующих электромагнитных клапанах, импульсном электроприводе и т. д.); 2) для быстрого нагрева газа и проводников (нагрев газа при аэродинамических и термоядерных исследованиях, получение мощных ударных волн и расходящихся потоков жидкости для эхолокации и сейсморазведки, деформирование и разрушение материалов, электрический взрыв проводников, питание импульсных источников света, электроэрозионная обработка металлов, импульсная
Источниками импульсов тока служат: ударные электрические генераторы, накапливающие энергию до 108дж в виде кинетической энергии массивного ротора (см. Генератор электромашинный); аккумуляторы, конденсаторные батареи (ёмкостные накопители), заряжаемые от источника постоянного напряжения (например, контур Горева); индуктивные накопители (накопление энергии происходит в катушке индуктивности); взрывные генераторы, в которых происходит уменьшение объёма контура или катушки с током при взрыве или под действием магнитного поля (рис. 5).
Для присоединения нагрузки к импульсным источникам сильных токов используют тиратроны, (при токе до 103—104а и напряжении ~ 20—30 кв), разрядники с повышенным и атмосферным давлением (токи до 106а и напряжения до 105в), вакуумные разрядники с непрерывной откачкой (токи до 106а, напряжения до 10—20 кв) и запаянные (токи до 103а и напряжения до 105в). Применяются также разрядники с твёрдым диэлектриком, заменяемым после каждого разряда (токи ~ 106а, напряжения ~ 104в). Для согласования ёмкостных и индуктивных накопителей с нагрузкой применяются импульсные трансформаторы. Измерение импульсных токов проводится с помощью шунтов или измерительных трансформаторов (пояса Роговского) с интегрирующими цепями. Для этой же цели применяются устройства, использующие явление вращения плоскости поляризации (угол поворота плоскости поляризации пропорционален напряжённости магнитного поля, создаваемого измеряемым током).
Лит.: Техника высоких напряжений, под ред. Л. И. Сиротинского, ч. 1, М., 1951; Гончаренко Г. М., Жаков Е. М., Дмоховская Л. Ф., Испытательные установки и измерительные устройства в лабораториях высокого напряжения, М., 1966; Фрюнгель Ф., Импульсная техника. Генерирование и применение разрядов конденсаторов, пер. с нем., М.—Л., 1965; Техника больших импульсных токов и магнитных полей, под ред. В. С. Комелькова, М., 1970; Месяц Г. А., Насибов А. С., Кремнев В. В., Формирование наносекундных импульсов высокого напряжения, М., 1970; Физика быстропротекающих процессов, пер. с нем., под ред. Н. А. Златина, т. 1, М., 1971.
И. П. Кужекин.
Рис. 4. Спиральный генератор.
Рис. 2. Схема кабельного генератора наносекундных импульсов высокого напряжения; К — отрезки коаксиального кабеля; П — искровой промежуток; О — нагрузка.
Рис. 1. Схема генератора импульсных напряжений (ГИН, или схема Аркадьева — Маркса): ПН — источник постоянного напряжения; С — конденсаторы; R — зарядные сопротивления; Rд — демпфирующие
Рис. 5. Амплитуды и длительности токов, получаемых от различных импульсных источников тока: I — взрывные генераторы; II — ёмкостные накопители энергии; III — индуктивные накопители: IV — импульсные аккумуляторы; V — контур Горева; VI — ударные генераторы.
Рис. 3. Схема генератора Блюмлейна: ИП — источник постоянного напряжения или ГИН; Л — трёхполосная полосковая линия.
Импульсное управление электроприводом
И'мпульсное управле'ние электроприво'дом, метод управления частотой вращения или вращающим моментом электродвигателей, основанный на периодическом изменении параметров цепей двигателя или схемы его присоединения к источнику энергии. Например, при замкнутом контакте импульсного элемента (ИЭ) (см. рис.) цепь якоря Я подключена к источнику Uп и двигатель разгоняется. При разомкнутом контакте двигатель тормозится статическим моментом нагрузки Mc. Среднее значение частоты вращения n определяется относительным временем t1 включения ИЭ и нагрузкой Mc, т. е., меняя продолжительность импульса питающего напряжения, можно регулировать частоту вращения в широких пределах. В качестве коммутирующих ИЭ применяются реле, контакторы, магнитные усилители, ионные приборы, транзисторы. Подобные схемы отличаются низкими кпд и коэффициентом использования двигателя при глубоком регулировании частоты вращения.
Для И. у. э. характерны простота и надёжность, а схема управления на транзисторах отличается, кроме того, высокой экономичностью, малыми габаритами и массой, поэтому такие схемы широко применяются в самолётных электроприводах и металлообрабатывающих станках.
Лит.: Твердин Л. М., Система УРВ-Д с импульсным регулированием скорости вращения, в кн.: Автоматизированный электропривод, в. 2, М., 1960; Нагорский В. Д., Управление двигателями постоянного тока с помощью импульсов повышенной частоты, «Изв. АН СССР. Отделение технических наук», 1960, № 2.
Импульсное регулирование частоты вращения электродвигателя: а — схема включения электродвигателя и временная диаграмма его работы; б — механические характеристики электропривода; ИЭ — импульсный элемент управления; Я — якорь электродвигателя; Uп — источник электроэнергии; Mc — нагрузка: uя — напряжение на якоре; iя — ток в якоре; n — частота врашения.
Импульсные источники света
И'мпульсные исто'чники све'та, предназначаются для получения одиночных или периодически повторяющихся световых вспышек длительностью от долей мксек до нескольких десятков мсек. По способу преобразования различных видов энергии в световое излучение И. и. с. подразделяют на 2 типа. К первому относятся приборы, использующие световое излучение низкотемпературной плазмы, получаемой с помощью конденсированного искрового разряда в газах, взрывающихся проволочек, пинч-эффекта и др. Действие источников второго типа основано на кратковременном возбуждении люминофора в результате прохождения через него электрического тока или при облучении пучком электронов. И. и. с. могут служить оптические квантовые генераторы (импульсные лазеры). Наибольшее применение в качестве И. и. с. получили импульсные лампы (кпд преобразования электрической энергии в световую до 50—70%), относящиеся к И. и. с. первого типа.