Большая Советская Энциклопедия (КО)
Шрифт:
Коджаэли (устар. назв. г. Измит)
Коджаэли' (Kocaeli), прежнее название г. Измит в Турции.
Коджори
Коджо'ри, климатический курорт в Грузинской ССР на высоте 1302—1400 м, в 18 км от Тбилиси. Лето умеренно тёплое (ср. температура июля 17 °С), зима мягкая (ср. температура января —3 °С); осадков около 800 мм в год. Лечение больных костным и лёгочным туберкулёзом. Санатории.
Коджоян Акоп Карапетович
Коджоя'н Акоп Карапетович [1(13).12.1883, Ахалцихе, ныне Грузинской ССР, — 24.4.1959, Ереван], советский график, живописец, народный художник Армянской ССР (1935). Учился в Мюнхене в студии А. Ажбе (1903—1905) и АХ (1905—07). С 1918 — в Армении. К.-график испытал влияние
Лит.: Дрампян P., А. К. Коджоян, М., 1960.
А. К. Коджоян. Иллюстрация к сказке Стефана Зорьяна «Азаран бабул». Акварель. 1925. Картинная галерея Армении. Ереван.
А. К. Коджоян. «Расстрел коммунистов в Зангезуре». 1930. Картинная галерея Армении. Ереван.
Кодзоков Лукман Магометович
Кодзо'ков Лукман Магометович (после крещения — Дмитрий Степанович) (1818, с. Абуково, ныне с. Первомайское Ставропольского края, — 1893), кабардинский общественный деятель и мыслитель 60—70-х гг. 19 в. Из дворян. В 1838 окончил философский факультет Московского университета. Мировоззрение К. формировалось под влиянием передовых людей России. В 1840 встретился с М. Ю. Лермонтовым. В статьях, записках, письмах и заметках К. затрагивал многие стороны экономического и культурного развития народов Северного Кавказа, показывал наличие классового неравенства, критиковал господствующую верхушку, колониальную политику царского правительства на Кавказе. К. был поборником укрепления отношений русской нации с кавказскими народами. В 1863—69 председатель Терско-Кубанской сословно-поземельной комиссии, с конца 1869 по 1888 председатель комиссии для разбора сословных прав горцев Кубанской и Терской областей.
Лит.: Кумыков Т. Х., Жизнь и общественная деятельность Л. М. Кодзокова. Нальчик, 1962; История Кабардино-Балкарской АССР т. 1. М.. 1967 с. 305 307—08, 428—31.
Кодина
Ко'дина, Кодема, Кандина, Кейдина, река в Архангельской области РСФСР, правый приток Онсги. Длина 183 км, площадь бассейна 2700 км2 . Питание смешанное, с преобладанием снегового. Средний расход воды около 20 м3 /сек (в 86 км от устья). Замерзает в ноябре, вскрывается в мае. Сплавная.
Кодино
Ко'дино, посёлок городского типа в Онежском районе Архангельской области РСФСР. Расположен на р. Кодина (приток Онеги). Железнодорожная станция на линии Беломорск — Обозерская. Целлюлозный завод, леспромхоз.
Кодирование
Коди'рование, операция отождествления символов или групп символов одного кода с символами или группами символов другого кода. Необходимость К. возникает прежде всего из потребности приспособить форму сообщения к данному каналу связи или какому-либо другому устройству, предназначенному для преобразования или хранению информации. Так, сообщения представленные в виде последовательности букв, например русского языка, и цифр, с помощью телеграфных кодов преобразуются в определённые комбинации посылок тока. При вводе в вычислительные устройства обычно пользуются преобразованием числовых данных из десятичной системы счисления в двоичную и т.д. (см. Кодирующее устройство ).
К. в информации теории применяют для достижения следующих целей: во-первых, для уменьшения так называемой избыточности сообщений и, во-вторых, для уменьшения влияния помех, искажающих сообщения при передаче по каналам связи (см. Шеннона теорема ). Поэтому выбор нового кода стремятся наиболее удачным образом согласовать со статистической структурой рассматриваемого источника сообщений. В какой-то степени это согласование имеется уже
Приёмы, применяемые в теории информации для достижения указанного согласования, можно пояснить на примере построения «экономных» двоичных кодов. Пусть канал может передавать только символы 0 и 1, затрачивая на каждый одно и то же время t. Для уменьшения времени передачи (или, что то же самое, увеличения её скорости) целесообразно до передачи кодировать сообщения таким образом, чтобы средняя длина L кодового обозначения была наименьшей. Пусть х1 , х2 ,..., xn обозначают возможные сообщения некоторого источника, a p1 , р2 , ..., р2 — соответствующие им вероятности. Тогда, как устанавливается в теории информации, при любом способе К.,
где L ³ Н, (1)
энтропия источника. Граница для L в формуле (1) может не достигаться. Однако при любых pi существует метод К. (метод Шеннона — Фэно), для которого
L lb Н + 1. (2)
Метод состоит в том, что сообщения располагаются в порядке убывания вероятностей и полученный ряд делится на 2 части с вероятностями, по возможности близкими друг к другу. В качестве 1-го двоичного знака принимают 0 в 1-й части и 1 — во 2-й. Подобным же образом делят пополам каждую из частей и выбирают 2-й двоичный знак и т.д., пока не придут к частям, содержащим только по одному сообщению.
Пример 1. Пусть n = 4 и p1 =9/16, р2 = р3 = 3/16, p4 = 1/16. Применение метода иллюстрируется табл.:
х, | Pi | Кодовое обозначение | ||
х1 | 9/16 | 0 | ||
х2 | 3/16 | 1 | 0 | |
х3 | 3/16 | 1 | 1 | 0 |
х3 | 1/16 | 1 | 1 | 1 |
B данном случае L =
Задача о «сжатии» записи сообщений в данном алфавите (то есть задача об уменьшении избыточности) может быть решена на основе метода Шеннона — Фэно. Действительно, с одной стороны, если сообщения представлены последовательностями букв длины N из м– буквенного алфавита, то их средняя длина LN после К. всегда удовлетворяет неравенству LN ³NH/log2 т, где Н — энтропия источника на букву. С другой стороны, при сколь угодно малом e>0 можно добиться выполнения при всех достаточно больших N неравенства