Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (КО)
Шрифт:

Ещё один способ проверки различных гипотез происхождения К. л. — измерение интенсивности К. л. в далёком прошлом, в частности в периоды известных вспышек ближайших сверхновых (например, вспышки в 1054). Существуют два метода, с помощью которых можно было бы обнаружить эффекты возрастания интенсивности К. л. в прошлом не только в результате взрыва сравнительно недалёких от Солнечной системы сверхновых звёзд, но и в результате возможных гораздо более мощных взрывных процессов в ядре Галактики. Это радиоуглеродный метод, в котором по концентрации изотопа 14 С в различных годичных кольцах очень старых деревьев определяют темп накопления в атмосфере 14 C, образующегося в результате ядерных реакций под действием К. л., и метеоритный метод, основанный на изучении состава стабильных и радиоактивных изотопов метеоритного вещества, подвергавшегося длительному воздействию К. л Эти методы свидетельствуют о том, что средняя интенсивность К. л. сравнительно мало отличалась от современной в течение десятков тысяч и миллиарда лет соответственно. Постоянство интенсивности К. л. в течение миллиарда лет делает маловероятной гипотезу о происхождении всех К.

л. в процессе взрыва ядра нашей Галактики, который считается ответственным за образование галактического гало (пока не доказанного прямыми наблюдениями).

Взаимодействие К. л. с веществом.

1. Ядерно-активная компонента К- л. и множественная генерация частиц . При взаимодействии протонов и др. ядер первичных К. л. высокой энергии (~ несколько Гэв и выше) с ядрами атомов земной атмосферы (главным образом азота и кислорода) происходит расщепление ядер и рождение нескольких нестабильных элементарных частиц (т. н. множественные процессы ), в основном p-мезонов (пионов) — заряженных (p+ , p ) и нейтральных (p ) с временами жизни 2,5x10– 8сек и 0,8x10– 16сек соответственно. Со значительно меньшей вероятностью (в 5—10 раз) рождаются К-мезоны и с ещё меньшей — гипероны и практически мгновенно распадающиеся резонансы . На рис. 6 приведена фотография множественного рождения частиц, зарегистрированного в ядерной фотоэмульсии; частицы вылетают из одной точки в виде узкого пучка. Среднее число вторичных частиц, образующихся в одном акте взаимодействия протона (или p-мезона) с лёгким ядром пли одним нуклоном такого ядра, возрастает с ростом энергии E сначала по степенному закону, близкому к E1/3 (вплоть до E » 20 Гэв ), а затем (в области энергий 2x1010 —1013эв ) этот рост замедляется и лучше описывается логарифмической зависимостью. В то же время косвенные данные по широким атмосферным ливням указывают на процессы значительно более высокой множественности при энергиях ³ 1014эв.

Угловая направленность потока рожденных частиц в широком интервале энергии первичных и рожденных частиц такова, что составляющая импульса, перпендикулярная направлению первичной частицы (т. н. поперечный импульс), составляет в среднем 300—400 Мэв/с, где с — скорость света в вакууме (при очень высоких энергиях E частицы, когда энергией покоя частицы mc2 можно пренебречь по сравнению с её кинетической энергией, импульс частицы р = E/c ; поэтому в физике высоких энергий импульс обычно измеряют в единицах Мэв/с ).

Первичные протоны при столкновении теряют в среднем около 50% начальной энергии (при этом они могут испытывать перезарядку, превращаясь в нейтроны).

Образующиеся при расщеплении ядер вторичные нуклоны (протоны и нейтроны) и рожденные в столкновениях заряженные пионы высокой энергии будут также (вместе с потерявшими часть энергии первичными протонами) участвовать в ядерных взаимодействиях и вызывать расщепление ядер атомов воздуха и множественное образование пионов. Средний пробег, на котором осуществляется одно ядерное взаимодействие, принято измерять удельной массой пройденного вещества он составляет для первичных протонов ~ 90 г/см2 воздуха, т. е. ~9% всей толщи атмосферы. С ростом атомного веса вещества А средний пробег постепенно возрастает (примерно как А1/3 ), достигая ~ 160 г/см2 для свинца. Рождение пионов происходит в основном на больших высотах (20—30 км ), но продолжается в меньшей степени по всей толще атмосферы и даже на глубине нескольких м грунта.

Вылетающие при ядерных столкновениях нуклоны ядер и не успевшие распасться заряженные пионы высокой энергии образуют ядерно-активную компоненту вторичных К. л. Многократное повторение последовательных, каскадных взаимодействий нуклонов и заряженных пионов с ядрами атомов воздуха, сопровождающихся множественной генерацией новых частиц (пионов) в каждом акте взаимодействия, приводит к лавинообразному возрастанию числа вторичных ядерно-активных частиц и к быстрому уменьшению их средней энергии. Когда энергия отдельной частицы становится меньше 1 Гэв, рождение новых частиц практически прекращается и остаются (как правило) только процессы частичного (а иногда полного) расщепления атомного ядра с вылетом нуклонов сравнительно небольших энергий. Общий поток частиц ядерно-активной компоненты по мере дальнейшего проникновения в глубь атмосферы уменьшается (рис. 7 , кривая 1), и на уровне моря (~1000 г/см2 ) остаётся менее 1% ядерно-активных частиц.

2. Электронно-фотонные ливни и мягкая компонента вторичных К.л.

Образующиеся при взаимодействиях частиц ядерно-активной компоненты с атомными ядрами нейтральные пионы практически мгновенно распадаются (вследствие их очень малого времени жизни) на два фотона (g ) каждый: p°®2g . Этот процесс даёт начало электронно-фотонной компоненте К. л. (она называется также мягкой, т. е. легко поглощаемой, компонентой).

В сильных электрических полях атомных ядер эти фотоны рождают электронно-позитронные пары e e+ (g ®e +e+ ), а электроны и позитроны, в свою очередь, путём тормозного излучения испускают новые фотоны (е± ®е± + g ) и т. д. Такие процессы, носящие каскадный характер, приводят к лавинообразному нарастанию общего числа частиц — к образованию электронно-фотонного ливня. Развитие электронно-фотонного ливня приводит к быстрому дроблению энергии p на всё большее число частиц, т. е. к быстрому уменьшению средней энергии каждой частицы ливня. После максимального развития мягкой компоненты, достигаемого на высоте около 15 км (~ 120 г/см2 ), происходит её постепенное затухания (рис. 7 , кривая 2). Когда энергия каждой частицы становится меньше некоторого критического значения (для воздуха критическая энергия составляет около 100 Мэв ), преобладающую роль начинают играть потери энергии на ионизацию атомов воздуха и комптоновское рассеяние (см. Комптона эффект ); увеличение числа частиц в ливне прекращается, и его отдельные частицы быстро поглощаются. Практически полное поглощение электронно-фотонной компоненты происходит на сравнительно небольших толщах вещества (особенно большой плотности); в лабораторных условиях для этого достаточно иметь свинцовый экран толщиной 10—20 см (в зависимости от энергии частиц). Электронно-фотонный ливень, зарегистрированный в камере Вильсона, приведён на рис. 8.

Основной характеристикой электронно-фотонного ливня является изменение числа частиц с увеличением толщины пройденного вещества — т. н. каскадная кривая (рис. 9 ). В соответствии с теорией этого процесса число частиц в максимуме каскадной кривой примерно пропорционально энергии первоначальной частицы. Углы отклонения частиц от оси ливня определяются рассеянием электронов и позитронов, а средний поперечный импульс составляет около 20 Мэв/с.

Наряду с p°-мезонами в К. л. существуют и др. источники образования электронно-фотонных ливней. Это электроны и g– кванты высокой энергии (> 100 Мэв ) первичных К. л., а также d– электроны, т. е. атомарные электроны, выбиваемые за счёт прямого электрического взаимодействия проходящих сквозь вещество быстрых заряженных частиц К. л.

При очень высоких энергиях (³ 1014эв ) электронно-фотонные ливни в земной атмосфере приобретают специфические черты широких атмосферных ливней. В таких ливнях очень большое число последовательных каскадов размножения приводит к сильному росту общего потока частиц (исчисляемого в зависимости от энергии многими миллионами и даже миллиардами) и к их широкому пространственному расхождению — на десятки и сотни м от оси ливня. В широких атмосферных ливнях у поверхности Земли одна частица ливня приходится примерно на несколько (2—3 ) Гэв энергии первичной частицы, вызвавшей ливень. Это даёт возможность оценивать по полному потоку частиц в ливне энергию приходящих на границу земной атмосферы «предков» этих ливней, что невозможно сделать непосредственно из-за крайне малой вероятности их прямого попадания в точку наблюдения.

Вследствие большой плотности потока частиц в широком атмосферном ливне испускается сравнительно интенсивное направленное электромагнитное излучение как в оптической области спектра, так и в радиодиапазоне. Оптическая часть свечения определяется процессом Черенкова — Вавилова излучения , поскольку скорости большинства частиц превышают фазовую скорость распространения света в воздухе. Механизм радиоизлучения более сложен; он связан, в частности, с тем, что магнитное поле Земли вызывает пространственное разделение потоков отрицательно и положительно заряженных частиц, что эквивалентно возникновению переменного во времени электрич. диполя .

3. Космические мюоны и нейтрино. Проникающая компонента вторичного излучения. Возникающие в атмосфере под действием К. л. заряженные пионы участвуют в развитии ядерного каскада лишь при достаточно больших энергиях — до тех пор, пока не начинает сказываться их распад на лету. В верхних слоях атмосферы процессы распада становятся существенными уже при энергиях lb 1012 эв.

Заряженный пион (с энергией lb 1011эв ) распадается на мюон m± (заряженную нестабильную частицу с массой покоя mm »207 me, где me — масса электрона, и средним временем жизни t

Поделиться:
Популярные книги

Возвращение Безумного Бога

Тесленок Кирилл Геннадьевич
1. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога

Последняя Арена 9

Греков Сергей
9. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 9

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Саженец

Ланцов Михаил Алексеевич
3. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Саженец

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Звездная Кровь. Изгой II

Елисеев Алексей Станиславович
2. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
технофэнтези
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой II

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Наследница долины Рейн

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наследница долины Рейн

Вампиры девичьих грез. Тетралогия. Город над бездной

Борисова Алина Александровна
Вампиры девичьих грез
Фантастика:
фэнтези
6.60
рейтинг книги
Вампиры девичьих грез. Тетралогия. Город над бездной

Шесть тайных свиданий мисс Недотроги

Суббота Светлана
Любовные романы:
любовно-фантастические романы
эро литература
7.75
рейтинг книги
Шесть тайных свиданий мисс Недотроги

Одержимый

Поселягин Владимир Геннадьевич
4. Красноармеец
Фантастика:
боевая фантастика
5.00
рейтинг книги
Одержимый

Вечный. Книга VI

Рокотов Алексей
6. Вечный
Фантастика:
рпг
фэнтези
5.00
рейтинг книги
Вечный. Книга VI