Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ЛО)
Шрифт:

С помощью электронной теории Л. удалось объяснить многие явления (соотношение между коэффициентом преломления вещества и поляризуемостью — Лоренц — Лоренца формула, связь между коэффициентами тепло- и электропроводности металлов, эффекты Холла, Керра и другое). Л. объяснил Зеемана эффект и предсказал поляризацию компонент зеемановского расщепления (Нобелевская премия, 1902, совместно с П. Зееманом). Классическая электронная теория нашла своё завершение в монографии Л. «Теория электронов» (1909). Электронная теория в том виде, в каком она была создана Л., не только полностью сохранила своё значение до настоящего времени, но и

явилась фундаментом многих современных физических представлений.

Л. — автор классических работ по электродинамике движущихся сред. В 1895 он формально ввёл понятие «местного времени» и показал, что уравнения Максвелла приближённо справедливы во всех равномерно и прямолинейно движущихся системах отсчёта. Для объяснения Майкельсона опыта Л. использовал предположение о сокращении продольных размеров в направлении движения тел, высказанное им (и независимо от него ирландским физиком Дж. Ф. Фицджеральдом) в 1892. Ввёл пространственно-временные преобразования, описывающие переход от одной инерциальной системы отсчёта к другой и оставляющие инвариантными уравнения Максвелла (Лоренца преобразования, 1904), а также нашёл зависимость массы от скорости. Эти работы Л. сыграли большую роль в подготовке относительности теории.

Л. принадлежит также ряд работ по термодинамике и статистической физике (применение теоремы вириала к кинетической теории газов, термодинамика термоэлектрических явлений, молекулярная теория разбавленных растворов, применение статистических методов к электронной теории металлов и так далее). Некоторые работы Л. посвящены квантовой теории излучения, общей теории относительности.

Л. был председателем комитета по подготовке проекта частичного осушения залива Зёйдер-Зе (1918—26); для этого проекта он разработал новые математические методы гидродинамических расчётов. Был организатором и председателем Сольвеевских конгрессов по физике (1911—27). Член Комитета Лиги Наций по интеллектуальному сотрудничеству (с 1923, президент с 1927). Член многих академий и научных обществ мира.

Соч.: Collected papers, v. 1—9, Hague, 1934—39; в русском переводе — Принцип относительности, Л., 1935 (совместно с другими); Теория электронов и ее применение к явлениям света и теплового излучения, 2 издание, М., 1953; Старые и новые проблемы физики, М., 1970.

Лит.: Бройль Л., По тропам науки, перевод с французского, М., 1962; Голдберг С., Электронная теория Лоренца и теория относительности Эйнштейна, «Успехи физических наук», 1970, т. 102, в. 2.

В. П. Визгин.

Х. А. Лоренц.

Лоренца - Максвелла уравнения

Ло'ренца — Ма'ксвелла уравне'ния, Лоренца уравнения, фундаментальные уравнения классической электродинамики, определяющие микроскопические электромагнитные поля, создаваемые отдельными заряженными частицами. Л. — М. у. лежат в основе электронной теории (микроскопической электродинамики), построенной Х. А. Лоренцомв конце 19 — начале 20 вв. В этой теории вещество (среда) рассматривается как совокупность электрически заряженных частиц (электронов и атомных ядер), движущихся в вакууме.

В Л. — М. у. электромагнитное поле описывается двумя векторами: напряжённостями микроскопических полей — электрического е и магнитного h. Все электрические токи в электронной теории — чисто конвекционные, т. е. обусловлены движением заряженных частиц. Плотность тока j = ru, где r — плотность заряда, а u — его скорость.

Л. — М. у. были получены в результате обобщения макроскопических Максвелла

уравнений. В дифференциальной форме в абсолютной системе единиц Гаусса они имеют вид:

rot h =

,

rot е =

, (1)

div h = 0

div е = 4pr

(с — скорость света в вакууме).

Согласно электронной теории, уравнения (1) точно описывают поля в любой точке пространства (в том числе межатомные и внутриатомные поля и даже поля внутри электрона) в любой момент времени. В вакууме они совпадают с уравнениями Максвелла.

Микроскопические напряжённости полей е и h очень быстро меняются в пространстве и времени и непосредственно не приспособлены для описания электромагнитных процессов в системах, содержащих большое число заряженных частиц (то есть в макроскопических материальных телах). А именно такие макроскопические процессы представляют интерес, например, для электротехники и радиотехники. Так, при токе в 1 а через поперечное сечение проводника в 1 сек проходит около 1019 электронов. Проследить за движением всех этих частиц и вычислить создаваемые ими поля невозможно. Поэтому прибегают к статистическим методам, которые позволяют на основе определённых модельных представлений о строении вещества установить связь между средними значениями напряжённостей электрических и магнитных полей и усреднёнными значениями плотностей заряда и тока.

Усреднение микроскопических величин производится по пространственным и временным интервалам, большим по сравнению с микроскопическими интервалами (порядка размеров атомов и времени обращения электронов вокруг ядра), но малым по сравнению с интервалами, на которых макроскопические характеристики электромагнитного поля заметно изменяются (например, по сравнению с длиной электромагнитной волны и её периодом). Подобные интервалы называются «физически бесконечно малыми».

Усреднение Л. — М. у. приводит к уравнениям Максвелла. При этом оказывается, что среднее значение напряжённости микроскопического электрического поля

 равно напряжённости поля в теории Максвелла:
= Е, а среднее значение напряжённости микроскопического магнитного поля
 — вектору магнитной индукции:
 = В.

В теории Лоренца все заряды разделяются на свободные и связанные (входящие в состав электрически нейтральных атомов и молекул). Можно показать, что плотность связанных зарядов определяется вектором поляризации Р (электрическим дипольным моментом единицы объёма среды):

rсвяз. = - div Р (2)

а плотность тока связанных зарядов, кроме вектора поляризации, зависит также от намагниченности I (магнитного момента единицы объёма среды):

Поделиться:
Популярные книги

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Интриги двуликих

Чудинов Олег
Фантастика:
космическая фантастика
5.00
рейтинг книги
Интриги двуликих

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Облачный полк

Эдуард Веркин
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Облачный полк

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Вспомнить всё (сборник)

Дик Филип Киндред
Фантастика:
научная фантастика
6.00
рейтинг книги
Вспомнить всё (сборник)

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Восход Эндимиона

Симмонс Дэн
4. Гиперион
Фантастика:
космическая фантастика
9.00
рейтинг книги
Восход Эндимиона

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Глубина в небе

Виндж Вернор Стефан
1. Кенг Хо
Фантастика:
космическая фантастика
8.44
рейтинг книги
Глубина в небе

Работа для героев

Калинин Михаил Алексеевич
567. Магия фэнтези
Фантастика:
фэнтези
героическая фантастика
6.90
рейтинг книги
Работа для героев

Николай I Освободитель. Книга 2

Савинков Андрей Николаевич
2. Николай I
Фантастика:
героическая фантастика
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 2