Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (РЕ)
Шрифт:

Линии Р. обладают следующим замечательным свойством: среди всех действительных функций f (х) минимум математического ожидания Е[Yf(X)]2 достигается для функции f(x) = u(х), т. е. Р. Y по Х даёт наилучшее, в указанном смысле, представление величины Y по величине X. Это свойство используется для прогноза Y по X: если значение Y непосредственно не наблюдается и эксперимент позволяет регистрировать лишь компоненту Х вектора (X, Y),

то в качестве прогнозируемого значения Y используют величину u (X).

Наиболее простым является случай, когда Р. Y по Х линейна:

Е(Y"ix) = b + b1x.

Коэффициенты b и b1, называются коэффициентами регрессии, определяются равенствами

,

где mХ и mY математические ожидания Х и Y,

и
 — дисперсии Х и Y, а r — коэффициент корреляции между Х и Y. Уравнение Р. при этом выражается формулой

В случае, когда совместное распределение Х и Y нормально, обе линии Р. у = u(х) и х = u(у) являются прямыми.

Если Р. Y по Х отлична от линейной, то последнее уравнение есть линейная аппроксимация истинного уравнения Р.: математическое ожидание Е[Y b— b1X]2 достигает минимума b и b1 при b = b и b1 = b1. Особенно часто встречается случай уравнения Р., выражающегося линейной комбинацией тех или иных заданных функций:

у = u(Х) = bj(x) + b1j1(x) + ... + bmjm(x).

Наиболее важное значение имеет параболическая (полиномиальная) Р., при которой j(x) = 1 , j1(x) = x, ..., jm(x) = xm.

Понятие Р. применимо не только к случайным величинам, но и к случайным векторам. В частности, если Y — случайная величина, а Х = (X1, ..., Xk) случайный вектор, имеющие совместное распределение вероятностей, то Р. Y по X определяется уравнением

y = u ( x1, ..., xk),

где u( x1, ..., xk) = E{Y"iX = x1, ... , Xk = xk}.

Если

u ( x1, ..., xk) = b + b1x1 + ... + bkxk,

то Р. называется линейной. Эта форма уравнения Р. включает в себя многие типы Р. с одной независимой переменной, в частности полиномиальная Р. Y по Х порядка k сводится к линейной Р. Y по X1, ..., Xk, если положить Xk = Xk.

Простым примером Р. Y по Х является зависимость между Y и X, которая выражается соотношением: Y = u(X) + d, где u(x) = Е(Y IX = х), а случайные величины Х и d независимы. Это представление полезно, когда планируется эксперимент для изучения функциональной связи у = u(х) между неслучайными величинами у и х.

На практике обычно коэффициенты Р. в уравнении у = u(х) неизвестны и их оценивают по экспериментальным данным (см. Регрессионный анализ).

Первоначально термин «Р.» был употреблен английским статистиком Ф. Гальтоном (1886) в теории наследственности в следующем специальном смысле: «возвратом к среднему состоянию» (regression to mediocrity) было названо явление, состоящее в том, что дети тех родителей, рост которых превышает среднее значение на а единиц, имеют в среднем рост, превышающий среднее значение меньше чем на а единиц.

Лит.: Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Кендалл М. Дж., Стьюарт А., Статистические выводы и связи, пер. с англ., М., 1973.

А. В. Прохоров.

Регрессия моря

Регре'ссия моря (от лат. regressio — обратное движение, отход), отступание моря от берегов. Происходит в результате поднятия суши, опускания дна океана или уменьшения объёма воды в океанических бассейнах (например, во время ледниковых эпох). Р. происходили многократно в различных районах Земли на протяжении всей её истории. См. также Трансгрессия.

Регрессный иск

Регре'ссный иск, обратное требование, в гражданском праве и процессе адресованное в суд или арбитраж требование гражданина или организации, исполнивших обязательство за должника либо за какое-либо др. лицо, возместить уплаченную денежную сумму. Например, по советскому праву организация или гражданин, ответственные за причинённый вред, обязаны по Р. и. органа социального страхования или социального обеспечения возместить суммы пособия либо пенсии, которые выплачены потерпевшему в связи с болезнью или увечьем, полученным по их вине, а в случае смерти потерпевшего — лицам, указанным в законе. В соответствии со ст. 81 Основ гражданского законодательства 1961 страховая организация, уплатившая страховое возмещение по имущественному страхованию, вправе предъявить в пределах этой суммы требование к лицу, ответственному за причинённый вред. Ст. 93 Основ законодательства о труде предоставляет суду право возложить на должностное лицо, виновное в незаконном увольнении или переводе работника на др. работу, обязанность возместить ущерб, причинённый организации, оплатившей время вынужденного прогула или выполнения нижеоплачиваемой работы.

Поделиться:
Популярные книги

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Лучше подавать холодным

Аберкромби Джо
4. Земной круг. Первый Закон
Фантастика:
фэнтези
8.45
рейтинг книги
Лучше подавать холодным

Адвокат Империи 7

Карелин Сергей Витальевич
7. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 7

Адептус Астартес: Омнибус. Том I

Коллектив авторов
Warhammer 40000
Фантастика:
боевая фантастика
4.50
рейтинг книги
Адептус Астартес: Омнибус. Том I

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Башня Ласточки

Сапковский Анджей
6. Ведьмак
Фантастика:
фэнтези
9.47
рейтинг книги
Башня Ласточки

LIVE-RPG. Эволюция-1

Кронос Александр
1. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.06
рейтинг книги
LIVE-RPG. Эволюция-1

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Измена. Свадьба дракона

Белова Екатерина
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Измена. Свадьба дракона

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7