Большая Советская Энциклопедия (РИ)
Шрифт:
Римана дзета-функция
Ри'мана дзе'та-фу'нкция (математическая), см. Дзета-функция.
Римана интеграл
Ри'мана интегра'л, обычный определённый интеграл. Само определение Р. и. по существу было дано О. Коши(1823), который, однако, применял его к непрерывным функциям. Б. Риман впервые указал (1853, опубликовано в 1867) необходимое и достаточное условие существования определённого интеграла, которое в современных терминах может быть выражено так: для существования определённого интеграла функции на некотором интервале необходимо и достаточно, чтобы: 1) интервал был конечным; 2) функция была на нём ограниченной и 3) множество точек разрыва функции на этом интервале имело лебеговскую меру нуль (см. Мера множества).
Римана сфера
Ри'мана
z = х + iy = r (cos j + i sin j) = reij
можно изображать точками на плоскости (комплексной числовой плоскости) с декартовыми координатами х, у или полярными r, j. Для построения Р. с. проводится сфера, касающаяся комплексной числовой плоскости в начале координат; точки комплексной числовой плоскости отображаются на поверхность сферы с помощью стереографической проекции. В этом случае каждое комплексное число изображается соответствующей точкой сферы; последняя и называется сферой Римана. Число О изобразится при этом южным полюсом Р. с.; числа с одинаковым аргументом j = const (лучи комплексной числовой плоскости) изобразятся меридианами, а числа с одинаковым модулем r = const (окружности комплексной числовой плоскости) — параллелями Р. с. Северному полюсу Р. с. не соответствует никакая точка комплексной числовой плоскости. В целях сохранения взаимной однозначности соответствия между точками комплексной числовой плоскости и Р. с. на плоскости вводят «бесконечно удалённую точку», которую считают соответствующей северному полюсу и обозначают z = yen Т. о., на комплексной числовой плоскости имеется одна бесконечно удалённая точка, в отличие от проективной плоскости.
Если в пространстве ввести прямоугольную систему координат x, h, z так, что оси x и h совпадают, соответственно, с осями х и у, то точке x + iy комплексной числовой плоскости соответствует точка
Р. с. (уравнение которой
Риманова геометрия
Ри'манова геоме'трия, многомерное обобщение геометрии на поверхности, представляющее собой теорию римановых пространств, т. е. таких пространств, где в малых областях приближённо имеет место евклидова геометрия (с точностью до малых высшего порядка сравнительно с размерами области). Р. г. получила своё название по имени Б. Римана, который заложил её основы в 1854.
Понятие о римановой геометрии. Гладкая поверхность в евклидовом пространстве, рассматриваемая с точки зрения измерений, производимых на ней, оказывается двумерным пространством, геометрия которого (так называемая внутренняя геометрия), будучи приближённо евклидовой в малом (в окрестности любой точки она совпадает с точностью до малых высшего порядка с геометрией касательной плоскости), точно не является евклидовой; к тому же, как правило, поверхность неоднородна по своим геометрическим свойствам. Поэтому внутренняя геометрия поверхности и есть не что иное, как Р. г. двух измерений, а сама поверхность есть двумерное риманово пространство.
Так, при измерениях на участках земной поверхности, малых в сравнении с размерами земного шара, можно с успехом применять обычную планиметрию, однако результаты измерений на больших участках обнаруживают существенное отклонение от законов планиметрии. Перенесение этих понятий на многомерные пространства приводит к общей Р. г. В основе Р. г. лежат три идеи. Первая идея — признание того, что вообще возможна геометрия, отличная от евклидовой, — была впервые развита Н. И. Лобачевским, вторая — это идущее от К. Ф. Гаусса понятие внутренней геометрии поверхностей и её аналитический аппарат в виде квадратичной формы, определяющей линейный элемент поверхности; третья идея — понятие об n– мерном пространстве, выдвинутое и разработанное в 1-й половине 19 в. рядом геометров. Риман, соединив и обобщив эти идеи (в лекции «О гипотезах, лежащих в основании геометрии», прочитанной в 1854 и опубликованной в 1867), ввёл общее понятие о пространстве как непрерывной совокупности любого рода однотипных объектов, которые служат точками этого пространства (см. Геометрия, раздел Обобщение предмета геометрии, Пространство
После опубликования работ Римана его идеи привлекли внимание ряда математиков, которые развивали дальше аналитический аппарат Р. г. и устанавливали в ней новые теоремы геометрического содержания. Важным шагом было создание итальянскими геометрами Г. Риччи-Курбастро и Т. Леви-Чивита на рубеже 20 в. так называемого тензорного исчисления, которое оказалось наиболее подходящим аналитическим аппаратом для разработки Р. г. Решающее значение имело применение Р. г. в создании А. Эйнштейном общей теории относительности, которое было триумфом не только абстрактной геометрии, но и идей о связи геометрии и физики, выдвинутых Лобачевским и Риманом. Это привело к бурному развитию Р. г. и её разнообразных обобщений. В настоящее время Р. г. вместе с её обобщениями представляет собой обширную область геометрии, которая продолжает успешно развиваться, причём особое внимание уделяется вопросам глобального характера.
Определение риманова пространства. К строгому определению риманова пространства можно подойти следующим образом. Положение точки n– мерного многообразия определяется n координатами x1, x2,..., xn. В евклидовом n– мерном пространстве расстояние между любыми двумя точками X, Y в надлежаще выбранных координатах выражается формулой
где Dxi — разности координат точек X, Y. Соответственно в римановом пространстве в окрестности каждой точки А могут быть введены координаты x1,..., xnтак, что расстояние между точками X, Y, близкими к А, выражаются формулой
где e таково, что
(здесь коэффициенты
(она называется также метрической формой, или просто метрикой, R и является по своему определению положительно определённой). Возможность преобразования координат обусловливает то, что одно и то же риманово пространство в разных координатах имеет разные выражения метрической формы, однако её величина (вследствие своего геометрического смысла как квадрата элемента длины дуги) при преобразовании координат от xi к
Это приводит к определённому закону преобразования коэффициентов gij как компонент дважды ковариантного тензора (см. Тензорное исчисление); он называется метрическим тензором риманова пространства.
Каждой точке А риманова пространства R сопоставляется так называемое касательное евклидово пространство EA, в которое отображается некоторая окрестность U точки А так, что относительное искажение расстояний стремится к нулю при приближении к точке А. Аналитически это сводится к введению вблизи некоторой точки A