Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (РЯ)
Шрифт:

Одни и те же величины могут выражаться через суммы различных рядов. Так, для числа p, кроме Р. (3), имеются и другие Р., например

,

однако он сходится значительно «медленнее» Р. (3), и потому его невыгодно использовать для приближённого вычисления числа p. Существуют методы преобразования Р., иногда улучшающие скорость сходимости Р.

На бесконечные суммы не переносятся все свойства конечных сумм. Например, если взять Р.

1 - 1 + 1 - 1 +... (5)

и сгруппировать подряд его члены по два, то получим (1—1) + (1—1) +... = 0; при другом же способе группировки 1 — (1 — 1) — (1 — 1) —... = 1. Поэтому следует дать чёткое определение того, что называется бесконечной суммой, и, определив

это понятие, проверить, справедливы ли для таких сумм закономерности, установленные для конечных сумм. Доказывается, что для бесконечного числа слагаемых при определённых условиях сохраняются законы коммутативности и ассоциативности сложения, дистрибутивности умножения относительно сложения, правила почленного дифференцирования и интегрирования и т. п.

Числовые ряды. Формально Р. (1) можно определить как пару числовых (действительных или комплексных) последовательностей {un} и {Sn} таких, что Sn = u1 +... + un, n = 1, 2,... Первая последовательность называется последовательностью членов Р., а вторая — последовательностью его частичных сумм [точнее Sn называется частичной суммой n-го порядка Р. (1)]. Р. (1) называется сходящимся, если сходится последовательность его частичных сумм {Sn}. В этом случае предел

называется суммой Р. и пишется

Т. о., обозначение (1) применяется как для самого Р., так и для его суммы (если он сходится). Если последовательность частичных сумм не имеет предела, то Р. называется расходящимся. Примером сходящегося Р. является Р. (2), расходящегося — Р. (5). Каждый Р. однозначно определяет последовательность его частичных сумм, и обратно: для любой последовательности {sn} имеется и притом единственный Р., для которого она является последовательностью его частичных сумм, причём члены un этого Р. определяются по формулам u1 = s1,..., un+1 = sn+1 — sn,..., n = 1, 2,... В силу этого изучение Р. эквивалентно изучению последовательностей.

Р.

 называется остатком порядка n Р. (1). Если Р. сходится, то каждый его остаток сходится, а если какой-либо остаток Р. сходится, то и сам Р. также сходится. Если остаток порядка n Р. (1) сходится и его сумма равна rn, то s = sn + rп.

Если Р. (1) и Р.

сходятся, то сходится и Р.

,

называемый суммой рядов (1) и (6), причем его сумма равна сумме данных Р. Если Р.(1) сходится и l — комплексное число, то Р.

,

называемый произведением Р. на число l, также сходится и

.

Условие сходимости Р., не использующее понятия его суммы (в случаях, когда, например, сумма Р. неизвестна), даёт критерий Коши: для того чтобы Р. (1) сходился, необходимо и достаточно, чтобы для любого e > 0 существовал такой номер ne, что при любом n ³ ne и любом целом р ³ 0 выполнялось неравенство

.

Отсюда следует, что если Р. (1) сходится, то

Обратное неверно: n– й член так называемого гармонического ряда

стремится к нулю, однако этот Р. расходится.

Большую роль в теории Р. играют Р. с неотрицательными членами. Для того чтобы такой Р. сходился, необходимо и достаточно, чтобы последовательность его частичных сумм была ограничена сверху. Если же он расходится, то

,

поэтому в этом случае пишут

.

Для Р. с неотрицательными членами имеется ряд признаков сходимости.

Интегральный признак сходимости: если функция f (х) определена при всех х ³ 1, неотрицательна и убывает, то Р.

(7)

сходится тогда и только тогда, когда сходится интеграл

.

С помощью этого признака легко устанавливается, что Р.

(8)

сходится при a > 1 и расходится при a lb 1.

Признак сравнения: если для двух Р. (1) и (6) с неотрицательными членами существует такая постоянная с > 0, что 0 lb un  lb c un, то из сходимости Р. (6) следует сходимость Р. (1), а из расходимости Р. (1) — расходимость Р. (6). Обычно для сравнения берётся Р. (8), а в заданном Р. выделяется главная часть вида А/n a. Таким методом сразу получается, что Р. с n– м членом

,

где

сходится, поскольку сходится Р.

.

Как следствие признака сравнения получается следующее правило: если

то при a > 1 и 0 lb k < + yen Р. сходится, а при a lb 1 и 0 < k lb + yen Р. расходится. Так, например, Р. с n– м членом un = sin (1/n 2) сходится, ибо

Поделиться:
Популярные книги

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Север и Юг. Великая сага. Компиляция. Книги 1-3

Джейкс Джон
Приключения:
исторические приключения
5.00
рейтинг книги
Север и Юг. Великая сага. Компиляция. Книги 1-3

Жена на пробу, или Хозяйка проклятого замка

Васина Илана
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Жена на пробу, или Хозяйка проклятого замка

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

…спасай Россию! Десант в прошлое

Махров Алексей
1. Господин из завтра
Фантастика:
альтернативная история
8.96
рейтинг книги
…спасай Россию! Десант в прошлое

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Жена неверного ректора Полицейской академии

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного ректора Полицейской академии

Секреты серой Мыши

Страйк Кира
Любовные романы:
любовно-фантастические романы
6.60
рейтинг книги
Секреты серой Мыши

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Лекарь для захватчика

Романова Елена
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Лекарь для захватчика

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Бастард Императора

Орлов Андрей Юрьевич
1. Бастард Императора
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Бастард Императора

Карабас и Ко.Т

Айрес Алиса
Фабрика Переработки Миров
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Карабас и Ко.Т