Большая Советская Энциклопедия (СЧ)
Шрифт:
У первобытных народов не существовало развитой системы С. Ещё в 19 в. у многих племён Австралии и Полинезии было только два числительных: один и два; сочетания их образовывали числа: 3 — два-один, 4 — два-два, 5 — два-два-один и 6 — два-два-два. О всех числах, больших 6, говорили: «много», не индивидуализируя их. С развитием общественно-хозяйственной жизни возникла потребность в создании систем С., которые позволили бы считать и обозначать всё большие совокупности предметов. Одной из наиболее древних систем С. является египетская иероглифическая нумерация, возникшая ещё за 2500—3000 лет до н. э. Это была десятичная непозиционная система С., в которой для записи чисел применялся только принцип сложения (числа, выраженные рядом стоящими цифрами, складываются).
Для 10 000 был введён новый знак М. Тем не менее ионийская система С. оказалась непригодной уже для астрономических вычислений эпохи эллинизма, и греческие астрономы этого времени стали комбинировать алфавитную систему с шестидесятеричной вавилонской — первой известной нам системой С., основанной на позиционном принципе. В системе С. древних вавилонян, возникшей примерно за 2000 лет до н. э., все числа записывались с помощью двух знаков:
Современная десятичная позиционная система С. возникла на основе нумерации, зародившейся не позднее 5 в. в Индии. До этого в Индии имелись системы С., в которых применялся не только принцип сложения, но и принцип умножения (единица какого-нибудь разряда умножается на стоящее слева число). Аналогично строились старокитайская система С. и некоторые др. Если, например, условно обозначить число 3 символом III, а число 10 символом X, то число 30 запишется как IIIX (три десятка). Такие системы С. могли служить подходом к созданию десятичной позиционной нумерации.
Десятичная позиционная система С. даёт принципиальную возможность записывать сколь угодно большие числа. Запись чисел в ней компактна и удобна для производства арифметических операций. Поэтому вскоре после возникновения десятичная позиционная система С. начинает распространяться из Индии на Запад и Восток. В 9 в. появляются рукописи на арабском языке, в которых излагается эта система С., в 10 в. десятичная позиционная нумерация доходит до Испании, в начале 12 в. она появляется и в других странах Европы. Новая система С. получила название арабской, потому что в Европе с ней познакомились впервые по латинским переводам с арабского. Только в 16 в. новая нумерация получила широкое распространение в науке и в житейском обиходе. В России она начинает распространяться в 17 в. ив самом начале 18 в. вытесняет алфавитную. С введением десятичных дробей десятичная позиционная система С. стала универсальным средством для записи всех действительных чисел.
Лит.: Кэджори ф.. История элементарной математики с указаниями на методы преподавания, пер. с англ., 2 изд., Од., 1917; Леффлер Е., Цифры и цифровые системы культурных народов в древности и в новое время, пер. с нем., Од., 1913; Выгодский М. Я., Арифметика и алгебра в древнем мире, 2 изд., М., 1967; Башмакова И. Г. и Юшкевич А. ГГ., Происхождение систем счисления, в кн.: Энциклопедия элементарной математики, кн. 1, М.—Л., 1951.
И. Г. Башмакова.
Счисление пути
Счисле'ние пути' судна, непрерывный учёт элементов движения судна (скорости, направления) и воздействий внешних сил с целью определения координат судна (счислимого места) без наблюдения береговых ориентиров и небесных светил (обсерваций ). С. п. определяют положение судна с точностью, необходимой для плавания и обеспечения навигационной безопасности. С. п. производится на основании значений курса, скорости и вектора сноса судна. Графическое С. п. ведётся на карте, в его процессе осуществляются расчёт и прокладка истинных курсов и пройденных расстояний, учёт циркуляции и сноса судна. При таком С. п. с помощью автопрокладчика счислимое место получают непрерывно, при ручном способе — дискретно, с избранным интервалом времени. Аналитическое С. п. выполняется с помощью счётно-решающих устройств.
Считывание информации
Счи'тывание информа'ции в ЦВМ, извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. С. и. производится при выполнении большинства машинных операций , а иногда является самостоятельной операцией. Считывание может сопровождаться разрушением (стиранием) информации в тех ячейках (зонах) ЗУ, откуда производилось считывание (как, например, в ЗУ на ферритовых сердечниках), или быть неразрушающим (например, в ЗУ на магнитных лентах, дисках) и, следовательно, допускающим многократное использование однажды записанной информации. С. и. характеризуется временем, затрачиваемым непосредственно на вывод данных из ЗУ; оно составляет от нескольких десятков нсек до нескольких мсек. (См. также Запись и воспроизведение информации . )