Большая Советская Энциклопедия (ЩЕ)
Шрифт:
Неметаллические неорганические материалы. Щёлочестойкими являются многие неорганические материалы, в состав которых входят основные окислы (портландцемент, доломит, магнезит и др.). В водных щелочных средах при комнатной температуре и при нагревании устойчивы многие окислы: Cr2 O3 , ZrO2 , HfO2 , ThO2 , CeO2 , Al2 O3 , CdO и др.; с расплавленными щелочами они взаимодействуют. К расплавленному едкому натру при 540 °С наиболее устойчивы окислы алюминия и циркония.
Из стекол наиболее стойки к растворам щелочей кварцевые и многокомпонентные силикатные стекла, содержащие ZrO2 . Стойки к растворам щелочей
Горячие концентрированные растворы щелочей не действуют на графит и кристаллический бор. Высокую щёлочестойкость в растворах разбавленных и концентрированных щелочей имеют карбиды бора, хрома, титана, циркония, вольфрама, а также металлокерамические сплавы на основе карбидов хрома с никелем. Стойки в растворах щелочей также нитриды хрома, ниобия, циркония, кремния, бора, бориды никеля, железа, гексабориды РЗМ, а также силициды, сульфиды и фториды некоторых элементов.
Органические материалы. Многие полимерные материалы обладают высокой стойкостью в растворах щелочей и используются для получения антикоррозионных покрытий и красителей. В горячих и холодных щелочных растворах устойчивы полиизобутилен ,полипропилен ,полиэтилен ,фторопласт . Удовлетворит. стойкость в горячих растворах щелочей и высокую в холодных имеют асбовинил, пентапласт, полиамиды, поливинилхлорид, полистирол.
Лит.: Анализ тугоплавких соединений, М., 1962; Некрасов Б. В., Основы общей химии, 3 изд., т. 1—2, М., 1973; Будников П. П., Харитонов Ф, Я., Керамические материалы для агрессивных сред, М., 1971: Энциклопедия полимеров, т. 1—3, М., 1972—77.
Н. И. Тимофеева.
Щёлочи
Щёлочи, растворимые в воде основания. Водные растворы Щ. характеризуются высокой концентрацией гидроксильных ионов OH¾ . К Щ. относятся гидроокиси щелочных металлов ,щёлочноземельных металлов и аммония .
Большинство Щ. — твёрдые белые весьма гигроскопичные вещества. Растворение их в воде сопровождается выделением большого количества теплоты. Растворы Щ. изменяют цвет кислотно-щелочных индикаторов химических . Наиболее сильными, т. н. едкими, Щ. являются гидроокиси щелочных металлов (например, NaOH, KOH), более слабыми Щ. — гидроокиси щёлочноземельных металлов [например, Ca (OH)2 , Ba (OH)2 ] и аммония. К Щ. иногда относят соли сильных оснований и слабых кислот (см. Кислоты и основания ), водные растворы которых имеют щелочную реакцию, например гидросульфиды NaSH и KSH, карбонаты Na2 CO3 и K2 CO3 , гидрокарбонат NaHCO3 , буру Na2 B4 O7 и др. Щ. широко применяются в лабораторной практике и промышленности (см. Натрия гидроокись ,Калия гидроокись , Кальция гидроокись , Аммония гидроокись ).
Щёлочноземельные металлы
Щёлочноземе'льные мета'ллы, химические элементы главной подгруппы II группы периодической системы Д. И. Менделеева, входящие в семейство кальция, — Ca, Sr, Ba, Ra (иногда к Щ. м. относят также Be и Mg). Происхождение название связано с тем, что окиси Щ. м. (по терминологии алхимиков — «земли») сообщают воде щелочную реакцию. Внешняя электронная оболочка атомов Щ. м. содержит 2 s– электрона, ей предшествует оболочка из 2 s– и 6 р– электронов. Щ. м. проявляют в соединениях степень окисления +2. Химически Щ. м. активны, активность их возрастает от Ca к Ra. См. также Кальций ,Стронций ,Барий ,Радий .
Щелочной
Щелочно'й аккумуля'тор, электрический аккумулятор , в котором активной массой отрицательного электрода служит пластина из пористого железа или кадмия, положительного электрода — никелевый каркас, заполненный окисью никеля (III), электролитом — 20-процентный раствор едкого кали. Преобразование электрической энергии в химическую (зарядка) и обратно (разрядка) происходит в результате такой реакции, как, например:
Эдс Щ. а. равна 1,3 в. Удельная мощность Щ. а. меньше, чем у свинцового аккумулятора , однако он хорошо переносит перегрузки, нечувствителен к избыточному заряду, а также к сильному разряду. Щ. а. отдаётся предпочтение при неблагоприятных режимах работы (например, в электрокарах, при запуске больших дизельных двигателей и т.д.).
Щелочной элемент
Щелочно'й элеме'нт, см. в ст. Лекланше элемент .
Щелочные горные породы
Щелочны'е го'рные поро'ды, магматические горные породы, относительно богатые щелочными металлами — натрием и калием. Для минерального состава Щ. г. п. характерны нефелин и др. фельдшпатиды (содалит, канкринит ,лейцит ), а также щелочные пироксены и амфиболы (эгирин , арфведсонит и др.). По содержанию кремнезёма Щ. г. п. подразделяют на 3 гл. группы: ультраосновную — ийолиты, мельтейгиты, уртиты (40—45% SiO2 ), габброидную — тералиты, эссекситы (45—50%), и сиенитовую — щелочные и нефелиновые сиениты , (св. 50% SiO2 ). В земной коре представлены преимущественно небольшими (до 50—100 км2 ) интрузивными телами нефелиновых и щелочных сиенитов или их эффузивными разностями (нефелиниты, фонолиты, лейцититы, тефриты) в составе вулканических щёлочно-базальтовых ассоциаций на континентах и океанических островах. Ийолиты и мельтейгиты типичны для комплексных щёлочно-ультраосновных массивов, где преобладают пироксениты и оливиниты; к этим массивам приурочены крупные месторождения карбонатитов . Среди нефелиновых сиенитов выделяют миаскитовые
Лит.: Главнейшие провинции и формации щелочных пород, М., 1974; Щелочные породы. Сб. ст., пер. с англ., М., 1976.
Л. С. Бородин.
Щелочные металлы
Щелочны'е мета'ллы, химические элементы гл. подгруппы I группы периодической системы элементов Д. И. Менделеева: Li, Na, К, Rb, Cs, Fr. Название получили от гидроокисей Щ. м., названных едкими щелочами . Атомы Щ. м. имеют на внешней оболочке по 1 s– электрону, а на предшествующей —2 s- и 6 р– электронов (кроме Li). Степень окисления Щ. м. в соединениях всегда равна +1. Щ. м. химически очень активны — быстро окисляются кислородом воздуха, бурно реагируют с водой, образуя щёлочи MeOH (где Me — металл); активность возрастает от Li к Fr. См. также Литий ,Натрий ,Калий ,Рубидий ,Цезий ,Франций .