Большая Советская Энциклопедия (СС)
Шрифт:
Работы С. Л. Соболева в области математической физики вызвали необходимость изучения новых классов уравнений. Им введены новые функционально-аналитические методы исследования задач математической физики, ряд работ по математической физике выполнили Н. М. Гюнтер, Н. С. Кошляков и др.
М. В. Келдышем заложены основы теории несамосопряжённых операторов, которая применялась в исследованиях многочисленных учёных. Н. И. Мусхелишвили и его учениками получены важные результаты в области теории сингулярных интегральных операторов. Значит. работы проведены по спектральной теории операторов. Получено много результатов в изучении краевых задач смешанного типа и в теории квазилинейных систем. Ряд вопросов функционального анализа (теория нормированных колец, представления групп, обобщённые функции) изучался И. М. Гельфандом. Л. В. Канторовичем построена теория полуупорядоченных пространств. Л. И. Седовым предложены
В теоретической физике Н. Н. Боголюбов и В. С. Владимиров применили к проблемам квантовой теории поля методы теории аналитических функций множества комплексных переменных и теории обобщённых функций. Н. Н. Боголюбовым построена теория сверхтекучести и установлен фундаментальный факт, что сверхпроводимость может рассматриваться как сверхтекучесть электронного газа. Н. Н. Боголюбовым предложена система аксиом квантовой теории поля, которая дала возможность строго доказать дисперсионные соотношения. В связи с изучением вопросов квантовой теории поля Н. Н. Боголюбовым и В. С. Владимировым получены важные результаты в теории функций многих комплексных переменных (теорема об «острие клина», о «С– выпуклой оболочке», о «конечной инвариантности» и др.). Важные результаты в области теоретической физики принадлежат также Л. Д. Фаддееву.
Многочисленные работы в области теории вероятностей и математической статистики ведутся со времён деятельности П. Л. Чебышёва и его учеников А. М. Ляпунова и А. А. Маркова. С. Н. Бернштейн завершил исследования по предельным теоремам типа Лапласа и Ляпунова, приводящим к нормальному закону распределения, и изучил условия применимости основной предельной теоремы к зависимым величинам. Существенные результаты в области теории вероятностей получены А. Я. Хинчиным. А. Н. Колмогоровым разработана общепринятая ныне аксиоматика теории вероятностей, основанная на понятии меры. В трудах А. Н. Колмогорова и его школы широкое развитие получила теория случайных процессов. Ряд предельных теорем теории вероятностей доказан Ю. В. Прохоровым и его учениками, в том числе теоремы о сходимости распределений, связанных с суммами независимых случайных величин, к распределениям некоторых случайных процессов. Авторами работ в области теории вероятностей являются также А. А. Боровков и др., а в области математической статистики — Н. В. Смирнов, исследовавший её непараметрические задачи, Л. Н. Большев и др. Ю. В. Линником введены новые аналитические методы, примененные им и его учениками к предельным теоремам и к задачам параметрической статистики. Ряду учёных принадлежат исследования в области теории надёжности и теории массового обслуживания.
Выдающееся значение имеют работы Н. Н. Боголюбова, В. М. Глушкова, А. А. Дородницына, М. В. Келдыша, Н. Е. Кочина, М. А. Лаврентьева, А. Н. Тихонова и других учёных по прикладной математике. А. А. Дородницыным и его сотрудниками созданы методы решения задачи обтекания тел в полной нелинейной постановке для звуковых, сверхзвуковых и гиперзвуковых скоростей. Н. Е. Кочиным исследованы вопросы движения вязкой жидкости. Границы применения математики всё более расширяются. Наряду с традиционными областями её применения, такими, как механика, физика, астрономия, возникли новые — экономика, биология и др. Ряд приложений математики к вопросам экономики разработал Л. В. Канторович.
Теорией приближённых вычислений занимался А. Н. Крылов. Современная вычислительная математика возникла из задач новой техники на основе использования классической математики и применения ЭВМ. Этим путём были решены важные задачи, относящиеся к проблеме овладения атомной энергией, к теории космического полёта и к другим вопросам. Появление ЭВМ поставило перед математикой ряд новых проблем, в частности посвященных изучению различных алгоритмов. В этой связи проведено сравнительное изучение алгоритмов для широкого круга задач, исследован вопрос о построении наилучших (или близких к наилучшим) алгоритмов, принадлежащих данному классу при различных критериях оптимальности. Важное значение для вычислит. техники имеет теория алгоритмических языков, дающая возможность унификации и упрощения программирования на ЭВМ.
А. Н. Тихоновым и его сотрудниками изучена задача численного интегрирования обыкновенных дифференциальных уравнений с разрывными коэффициентами и получены удобные для машинной реализации алгоритмы нахождения регуляризованного решения для многих некорректных задач математической физики; в той же области работают В. К. Иванов, М. М. Лаврентьев и др. В. М. Глушковым, А. А. Дородницыным, А. А. Самарским, а также Н. П. Бусленко, Н. Н. Говоруном, С. К. Годуновым, Е. В. Золотовым, В. А. Мельниковым, Н. Н. Моисеевым, В. В. Русановым и другими
Среди научных учреждений, которые разрабатывают вопросы, связанные с вычислительной техникой, находятся Институт прикладной математики АН СССР (1963), Институт точной механики и вычислительной техники (1948, Москва), Вычислительный центр АН СССР (1955), Институт кибернетики АН УССР (1962, Киев) и др.
Советские математики принимают участие в работе Международного математического союза (с 1957) и Международных математических конгрессов (с 1928).
Периодические издания: «Математический сборник» (с 1866), «Труды Математического института им. В. А. Стеклова АН СССР» (с 1931), «Известия АН СССР. Серия математическая» (с 1937), «Успехи математических наук» (с 1936), «Теория вероятностей и ее применения» (с 1956), «Журнал вычислительной математики и математической физики» (с 1961), «Математические заметки» (с 1967), «Функциональный анализ и его приложения» (с 1967), «Теоретическая и математическая физика» (с 1969), «Украинский математический журнал» (с 1949), «Сибирский математический журнал» (с 1960), «Дифференциальные уравнения» (с 1965) и др.
См. Математика, Чисел теория, Алгебра, Логика, Геометрия, Топология, Функций теория, Функциональный анализ, Дифференциальные уравнения, Вероятностей теория, Математическая статистика, Вычислительная математика, Математические журналы.
К. К. Марджанишвили.
Астрономия
На территории СССР в разных районах имеется немало материальных памятников древней культуры, свидетельствующих об интересе к астрономическим наблюдениям в весьма отдалённую эпоху; таковы, в частности, сохранившиеся на С.-З. Европейской территории и в Средней Азии наскальные рисунки с астрономическим содержанием; это подтверждает и хорошо разработанная лунно-солнечная календарная система, которой с давних времён пользовались славянские народы. В 10—13 вв. на Руси получили распространение книги, содержащие, в частности, сведения об устройстве Вселенной, о причинах солнечных и лунных затмений и др. Много записей астрономического характера (о солнечных пятнах и протуберанцах, затмениях Солнца и Луны, появлениях комет и т. п.) имеется в русских летописях 11—13 вв. Уже в 7 в. получил распространение трактат по космографии армянского учёного Анании Ширакаци, содержавший астрономические сведения того времени. Больших успехов достигла астрономия в 10—15 вв. у народов Средней Азии на территориях, ныне входящих в СССР: Аль-Бируни из Хорезма принадлежит трактат о летосчислении народов мира, на обсерватории Улугбека в Самарканде выполнен ряд работ, среди которых особое значение имеет составление каталога положений 1019 звёзд.
В конце 17 — начале 18 вв. в России появились первые астрономические обсерватории. На основанной в 1701 обсерватории при Школе математических и навигацких наук (Москва) наблюдения проводил Я. В. Брюс. Петербургская АН с первых лет существования имела астрономическая обсерваторию в Петербурге. Работавшие на ней И. Делиль (первый её директор), Н. И. Попов и др. выполняли работы, имевшие не только научное, но и практическое значение. В 1753 была открыта обсерватория при Виленском (Вильнюсском) университете. С целью определения параллакса Солнца и для определения долгот городов России во 2-й половине 18 в. был организован ряд экспедиций, в которых работали все ведущие астрономы АН, в том числе Ж. Делиль, А. Д. Красильников, А. И. Лексель, Н. И. Попов, С. Я. Румовский. Во время прохождения Венеры по диску Солнца в 1761 М. В. Ломоносов обнаружил атмосферу этой планеты.
1-я половина 19 в. ознаменовалась открытием астрономических обсерваторий при ряде университетов — Харьковском, Дерптском (позже Юрьевский, Тартуский), Казанском, Московском, Киевском, Петербургском и др. В 1839 вблизи Петербурга была открыта Пулковская астрономическая обсерватория, ставшая в первые же годы своего существования одной из лучших обсерваторий мира по научному оборудованию и значению выполненных работ. Основателем и первым директором обсерватории был В. Я. Струве. Всеобщее признание получила Пулковская астрометрическая школа; велись исследования строения звёздной системы и закономерностей движения звёзд в ней (В. Я. Струве, М. А. Ковальский и др.). Первые в России работы в области астрофизики были выполнены Ф. А. Бредихиным и А. А. Белопольским. Таким образом, в дореволюционной России имелось немалое число астрономических обсерваторий (ко 2-й половине 19 в. были открыты новые обсерватории в Одессе, Ташкенте, Симеизе и др.), где были достигнуты значит. успехи в ряде разделов астрономии и прежде всего — в астрометрии, звёздной астрономии.